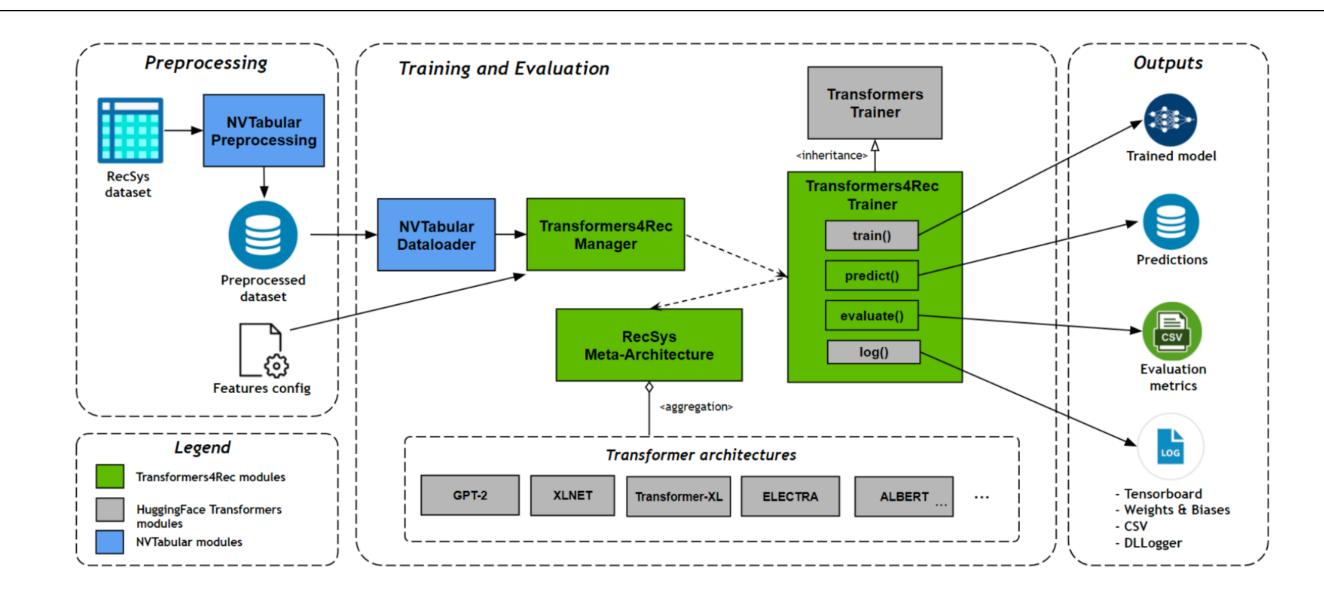
Further investigating transformer models in recommender systems

Motivations

- Transformers4Rec[1] introduced by NVIDIA to bridge NLP transformers models to RecSys.
- While the original paper showed promising results it focused on smaller datasets and simple features like item IDs.
- We want to explore the application of T4Rec on a larger dataset, with more complex features, and validate the assumptions surrounding dataset sizes of transformers models from NLP in the context of RecSys.

Key Idea

- Item recommendations can be represented as a next-in-sequence prediction problem
- Incorporating more expressive features such as as article textual embeddings might improve model performance.
- Using the larger dataset and two smaller subsamplings we are looking the validate the assumptions from NLP on the amount of data required by Transfomer models.



Overview of Transformers4Rec

Approach

- . Started by preprocessing the Ekstra Bladet News Recommendation Dataset (EB-NeRD), by creating artificial sessions from combining impressions and user history.
- 2. Divided the resulting sessions into smaller sessions.
- 3. The final dataset spans 35 days of impressions, we use the first 34 days for training and the final day for reporting performance.
- 4. Extend Transformers4Rec to support additional article features, and the articles textual embedding along side article ids.

Jakub Frac¹ Dominykas Seputis² Marcell Schuh¹

¹Vrije Universiteit Amsterdam

Experiments

We designed several experiments to verify the importance of additional signals.

- Trained models with various combination of features: Article IDs, only
- Article IDs, and article features
- Article IDs, and article text embeddings
- Article IDs, article features, and text embeddings
- Trained models on different subsamplings (10%, 50%, and 100%) of the dataset.
- Tested to model two bases: XLNet, and GPT2. In order compare masked language modeling (MLM) in the encoder setting against next-token prediction in the decoder setting.
- We use Normalized Discounted Cumulative Gain (NDCG) and recall at various top-k stages to assess the prediction of next-click.

Results

Feature Impact on Model Performance

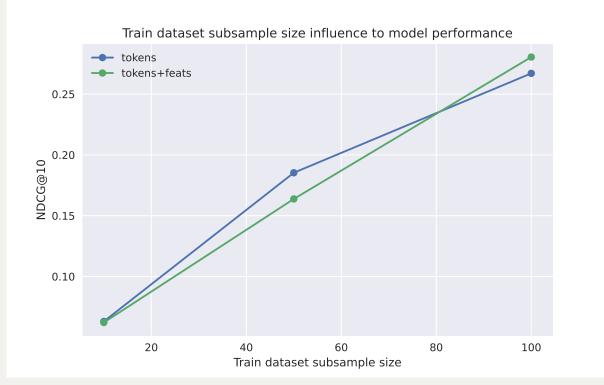
We found that the addition of article metadata only improved metrics by 2%, in contrast the addition of pre-trained textual embeddings resulted in nearly doubled metrics. All this with only a 4.6% growth in model paramter size.

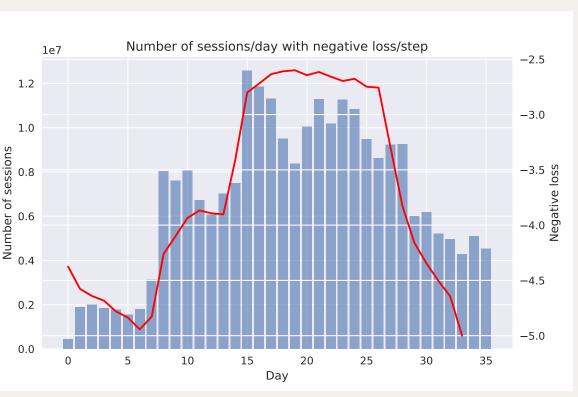
Features combination	Model size (parameters)	NDCG @ 10	Recall @ 10	NDCG @ 20	Recall @ 20
tokens	35,421,632	0.372	0.582	0.402	0.701
tokens+feats	35,427,803	0.379	0.587	0.409	0.706
tokens+emb	37,123,072	0.667	0.693	0.673	0.717
tokens+feats+emb	37,128,917	0.678	0.706	0.685	0.732

Figure 2. Comparison of model performance trained on different feature combinations and model sizes. The models were trained using XLNet with 100% of the training set.

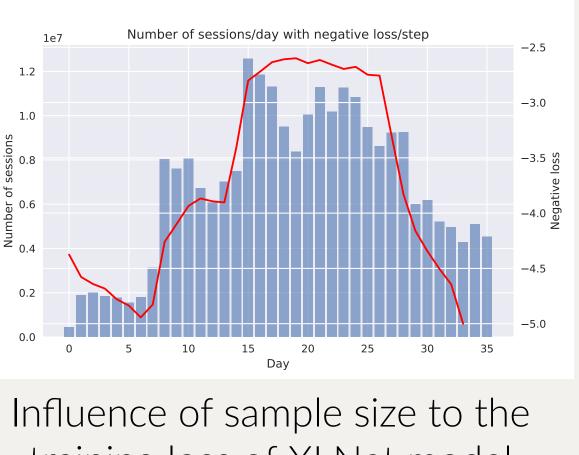
Data Size Impact on Model Performance

To evaluate the importance of dataset size for transformer-based recommender systems, we compare two XLNet configurations trained on tokens+feats and tokens with 10%, 50%, and 100% of the dataset subsamples.





Train dataset subsample size influence to model performance. The models were trained using XLNet with tokens and tokens+feats feature combinations.



²University of Amsterdam

training loss of XLNet model trained on 100% of data using tokens as features.

Model's base influence to model's performance

In our preliminary results (fig. 3) GPT-2 clearly outperforms XLNET despite having fewer parameters. It is unclear whether the encoder vs. decoder-only training strategies or the model architectures are influencing this performance discrepancy.

Model	Model size (parameters)	NDCG @ 10	Recall @ 10	NDCG @ 20	Recall @ 20
XLNet tokens+embs	37,123,072	0.169	0.225	0.181	0.272
XLNet tokens+feats+embs	37,128,917	0.205	0.265	0.217	0.312
GPT-2 tokens+embs	36,344,789	0.259	0.333	0.273	0.392
GPT-2 tokens+feats+embs	36,338,944	0.341	0.467	0.362	0.551

Figure 3. Comparison of model performance traind with different model heads (GPT-2 and XLNET).

Limitations

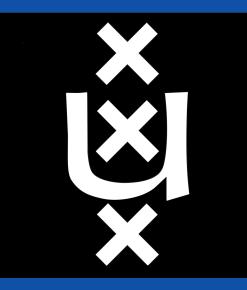
- continual training in production setting.
- compute to perform full training.

- setting.
- downstream objective.

Our experimental results validated several key insights.

- We found clear indication that more expressive features, such as textual embeddings improves the accuracy.
- Consistent with observations from NLP larger datasets clearly improve transformer based recommendation systems.
- When comparing XLNET and GPT-2 we found that GPT-2 proved superior, despite having fewer parameters. Suggesting generative pre-training might be advantageous.
- computational requirements.

[1] Gabriel de Souza Pereira Moreira, Sara Rabhi, Jeong Min Lee, Ronay Ak, and Even Oldridge.



Results (cont.)

• It is still not entirely clear whether Transformer models can be used for

• Large data volume and the model complexity requires large amounts of

Future work

• Further investigate Transformer re-training capabilities for the production

• Allow to finetune pretrained text embeddings models with the MLM/NTP

Summary

 While Transformers4Rec is promising we identified several issues while working with the framework around documentation, adaptability and

References

Transformers4rec: Bridging the gap between nlp and sequential / session-based recommendation. In Fifteenth ACM Conference on Recommender Systems, RecSys '21. ACM, September 2021.