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Abstract. Self-supervised pretraining has significant potential for im-
proving deep learning on functional MRI (fMRI) data. We introduce
a self-supervised Graph Transformer encoder pretrained with the Hi-
erarchical Functional Maximal Correlation Algorithm (HFMCA) and
evaluate its effectiveness on multiple resting-state fMRI datasets and
neuroimaging tasks. HFMCA-pretrained embeddings proved robust and
informative for various classification and regression benchmarks, often
matching or surpassing strong baselines. The pretrained encoder demon-
strated transferability to new datasets, with marked benefits in frozen
linear evaluations, although this advantage decreased after fine-tuning
and varied across tasks. Importantly, increasing the pretraining dataset
size did not consistently enhance downstream performance, with indis-
criminate scaling occasionally causing negative transfer. Overall, our re-
sults establish HFMCA-based pretraining as a robust and transferable
self-supervised strategy for fMRI graph representation learning, while
highlighting the need for careful selection of pretraining data to minimize
negative transfer. We discuss directions for mitigating such transfer and
encourage further development of scalable self-supervised approaches for
generalizable brain decoding models.

Keywords: HFMCA - self-supervised learning - graph transformer -
fMRI - representation learning

1 Introduction

Functional magnetic resonance imaging (fMRI) has become a cornerstone for
non-invasive investigation of human brain dynamics. A central focus in the field
is the analysis of resting-state functional connectivity, which assesses statistical
relationships in BOLD signal fluctuations across different brain regions. Alter-
ations in resting-state functional connectivity have been observed in various neu-
rological and psychiatric conditions, including autism [13, 18], depression [1, 10],
and schizophrenia [15, 20].

Application of deep learning techniques to fMRI data faces several chal-
lenges, primarily due to limited dataset sizes and variability in data preprocess-
ing pipelines. Recent developments in foundation models and transfer learning
[31] offer potential solutions to these challenges. Several studies have investigated
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self-supervised training on temporal BOLD signal data [6, 21, 27], demonstrat-
ing improved performance and greater robustness to domain shift. However, the
data distribution of high-dimensional temporal fMRI signals is difficult to model,
especially given limited sample sizes.

To address these issues, we propose a self-supervised Graph Transformer [19]
that models resting-state functional connectivity as graphs, capitalizing on their
inherent relational structure and reducing dependence on noisy temporal data.
Our encoder is pretrained with the Hierarchical Functional Maximal Correla-
tion Algorithm (HFMCA) [11], a multiview objective designed to align feature
representations across diverse graph augmentations and prevent representation
collapse, improving generalization even with limited data.

Our research is guided by three core hypotheses:

— H1 : The HFMCA pretrained encoder produces high-quality graph embed-
dings that effectively capture semantic information relevant for fMRI graph
classification tasks.

— Hs : The HFMCA pretrained encoder produces graph embeddings that allow
effective transfer learning across different fMRI graph classification tasks.

— Hsz : The quality of HFMCA pretrained encoder embeddings improves with
the size of the pretraining dataset.

The following sections will provide a detailed introduction to the HFMCA
training scheme, describe rs-fMRI modeling with deep neural networks, explain
the role of data augmentation, and present the details of the Graph Transformer
architecture. Next, we will describe our experiments and present and analyze the
results, which will inform the validity of our hypotheses. Finally, we will discuss
future directions based on our findings.

2 HFMCA Pretraining for GNNs

Hierarchical Functional Maximal Correlation Algorithm utilizes multiview self-
supervised learning to investigate the hierarchical relationships between the data
and their augmentations.

2.1 FMCA

Let us consider random variables X and Y. Given their probability distributions
p(X) and p(Y'), we can define their statistical dependence with a formula:

p(X,Y) (1)
p(X)p(Y)

The Functional Maximal Correlation Algorithm (FMCA) is built to measure
and maximize statistical dependence between two random variables, typically
using paired neural networks. [11] presents the theoretical foundation for model-
ing p using neural networks, enabling the training of encoders that encapsulate
meaningful semantic information within their embeddings.

p(X.Y) =
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It approximates p by decomposing it into a sum of eigenvalues and their
respective eigenfunctions:

p(X, Y
p(X)p

FMCA uses two encoders fy : X — R¥ and g, : ¥ — RX to approximate the
eigenfunctions ¢ and . The encoders map the original and augmented data into
K-dimensional embeddings, and then the autocorrelation and cross-correlation
matrices are defined as follows:

p(X)Y) = ”ZW% )(Y) (2)

Rp = Ex[fo(X)f] (X)]
Ra = Ey g, (Y)gL(Y)]
Prg =Ex y[fo(X)gl(Y)]

Roes — Rp Prg

FMCA will maximize the log-determinant of the auto-correlations Rp and
R, while minimizing the log-determinant of the joint autocorrelation Rpg:

)
)
(3)

min £ :=lo 7(16)6 Rra
B ® det Ry det Rg (4)
= logdet Rpg — logdet Rp — logdet Ry

Eigenvalues of the autocorrelation matrix quantify how much variance in the
data is explained by each corresponding eigenvector direction. Knowing that a
determinant is a product of all eigenvalues of the matrix, we infer that maximiz-
ing log-determinant of auto-correlations Ry and R¢ encourages the encoder to
create embeddings that explain as much variance in the data as possible. It also
encourages the features of the embeddings to be orthogonal.

The joint auto-correlation matrix Rpg encapsulates cross-correlation infor-
mation between embeddings fo(X) and f,,(Y). Minimizing its log-determinant
will encourage the features from both encoders to be aligned, which is expected
since both X and Y represent two views of the same object.

2.2 Hierarchical FMCA for Self-Supervised Learning

Similarly to other SSL methods [2, 3, 7, 30], HFMCA utilizes data augmentations
to learn meaningful representations. However, instead of a single pair (X,Y) let
us consider a source X and a set of augmentations

Y ={Yp,Y1... Yy}

where Y; = 7;(X) and 7; signifies ith augmentation function.
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Fig.1: HFMCA directly measures and maximizes statistical dependence among
multiple augmented views of each sample. The backbone fel processes each aug-
mentation into low-level features, which are separately projected by f92 and ag-
gregated by a projection head f7 into high-level features. HFMCA optimizes a
log-determinant cost that ensures these features are orthonormal while captur-
ing shared information across the hierarchy. After pretraining, f¢ and fj are
discarded and only the backbone f} is used for fine-tuning.

We will rely on augmentations that subsample the original data, such as
image cropping for computer vision or random walk subsampling for graph data.
The main idea is that each augmentation represents a separate, low-
level feature. Aggregations of all the low-level features form higher-
level features that summarize all views and semantically represent the
original object.

Instead of modeling dependence p between two views of the same object
(X,Y), we will model the dependence between hierarchical levels: the set of
all augmentation features and their high-level summary. More formally, we will
define the dependence p(ZL, Z#) as:

p(ZL, ZH)

L HY __
PEET) = LTy ay

(5)
Where:

— ZF = {ZF}L, - features from each augmentation, concatenated together
(Low).
— ZH _ a high-level feature (High).

To extract features from the augmented images, we will utilize two neural
networks fp and g,. Knowing that the features are hierarchical, we can utilize
weight sharing for faster and more robust training.

In the original paper [11], the authors used a backbone encoder f; and a pro-
jection head fZ. The backbone fj is first applied to 7" augmentations, extracting
T low-level features Z%. These features are then concatenated, acting as inputs
to the projection head and producing high-level feature Z. In the context of
the FMCA framework described above, fy is defined as f4, and g,, is defined as
an encoder f; followed by the projection head fZ.
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A part of our contribution is the introduction of an additional projection
head. Instead of using a combination of backbone and a single projection head,
we will use a backbone fj and two projection heads fZ, f§ to define the networks
fo and g,,. The network f6 is the backbone f; followed by the projection fz.
The network g,, is the same backbone f; followed by the projector f5. Adding
an additional projector head on top of the backbone is a widespread practice
in pretraining encoder models [7, 30], and it helps mitigate the noise of data
augmentation [2]. This process is visualized in Fig. 1.

Apart from the additional projector, the training protocol remains the same
as in [11]. With extracted low-level features Z¥ and the high-level feature ZH,
we implement the FMCA protocol:

Zt ={z{,2y ... 25} = {fo(Y0), fo(V1) ... fo(YT)}

With the low-level features Z© and the high-level feature Z¥, we compute
the autocorrelation and cross-correlation matrices:

RL,H = |:P[1:,H R}—[ :| (6)

We will minimize the log determinant of the joint auto-correlation matrix
Ry g to maximize statistical dependence between two hierarchical levels (Z
and ZH), and minimize the log-determinant of the separate auto-correlation
matrices Ry and Ry to extract orthogonal features:

min £ := logdet Ry, i — logdet Ry, —logdet Ry (7)
After pretraining, f7 and f; are discarded and only the backbone fj is used
for fine-tuning.

2.3 HFMCA Pretraining with rs-fMRI

Preprocessing fMRI Recordings

An rs-fMRI recording is represented as a 4-dimensional tensor of shape (X, Y,
Z, T), where (X, Y, Z) denote spatial voxel coordinates and T is the number
of time points. For each voxel, a temporal series of brain activity is recorded
across T time points. Voxels are assigned to Regions of Interest (ROIs) using
anatomical or functional atlases; the time series of voxels within each ROI are
then aggregated, typically by averaging, to facilitate analysis.
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Fig. 2: Visualizations of functional connectivity matrices derived from the REST,
ABIDE, AOMIC, and BSNIP datasets illustrate notable differences across
datasets. These differences arise primarily from variations in measuring equip-
ment. The most conspicuous differences are seen in the spatial resolution and
amplitude of the signals. For instance, the REST sample contains brighter re-
gions and larger clusters of similar colors, indicating higher contrast and lower
resolution, compared to the ABIDE sample.

We preprocessed the rs-fMRI data by parcellating each subject’s brain into
116 anatomical regions using the Automated Anatomical Labeling (AAL116)
atlas [24]. For each subject, we extracted the mean BOLD time series from each
ROI, resulting in a matrix of shape (116, T), where T is the number of acquired
time points. We then computed the Pearson correlation coefficient for all pairs of
ROls, yielding a symmetric 116x116 functional connectivity matrix per subject.
We extract top % (N = 116) coefficients to derive an adjacency matrx repre-
senting undirected brain networks. The functional connectivity values themselves
can serve as node features (i.e., zero-layer node embeddings). Thus, we obtain a
set of graphs suitable for processing by Graph Neural Networks (GNNs).

Figure 2 shows examples of functional connectivity matrices from four dis-
tinct datasets. Notable differences are evident, primarily resulting from varia-
tions in scanner equipment and acquisition protocols. The most apparent differ-
ences are in spatial resolution and signal amplitude.
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Data Augmentation

HFMCA relies on augmentations that subsample the original data, such
that each augmentation represents a separate, low-level feature. We chose three
augmentations that will mimic this behavior for graph data:

— Random Walk Sampling - generates new training samples or subgraphs by
simulating random walks on the network.

— Node Dropping - randomly removes certain nodes (and typically their adja-
cent edges) from the graph.

— Feature Masking - randomly masks (zeroes out) a subset of node features for
some training instances.

— Edge Removal - randomly deletes a portion of the edges in the graph.

The augmentation function is randomly chosen L times with replacement for
each data point, where L is a hyperparameter specifying the number of views
in the HFMCA algorithm. After we preprocessed and augmented the data, it is
ready to be passed to the model.

2.4 Network Architecture

We adopt a Transformer based GPS architecture for graph-structured data,
as proposed in [19]. GPS extends the transformer model to handle graphs by
operating over nodes and their neighborhoods, incorporating specialized graph
positional encodings to preserve the structural information important for con-
nectivity based domains such as brain networks. The architecture combines local
neighborhood information from Message-Passing Graph Neural Networks (MPNN)
and global information with Transformer-style attention (ATTN). As the MPNN
layer, we will utilize a powerful GinConv layer, as defined in [29]. For the ATTN
operator, we will employ the attention layer from [26].

Random Walk Positional Encodings

To improve the representation power of Graph Transformer layers, Random Walk
Positional Encodings (RWPE) can be injected into the node features. RWPEs
assign each node a vector that encodes its position within the graph based on
random walk landing probabilities, providing a unique embedding that captures
global structural relationships between nodes. It can be compared to the posi-
tional encodings in text. Original features with concatenated RWPEs are then
passed further to the Transformer network.

GPS Graph Transformer

Let us consider n initial node embeddings x € R", which are the rows of the
functional connectivity matrix, and the adjacency matrix A constructed from
it. We will use 2 as a Oth layer hidden representation, i.e., R = z. At each
layer, feature updates are obtained by combining the outputs from the MPNN
and global attention components. Both MPNN and ATTN serve as modular blocks;
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specifically, MPNN is a GinConv layer [29], and ATTN is a classic fully-connected
attention layer [26]. To avoid vanishing/exploding gradient problems, we use skip
connections and normalization layers:

it = NORM (MPNNY (R, A) + hY)
h& = NORM (ATTN' (Rf) + RY) (8)
R = NORM (R4S + RS+ MLPY (RS + RET))

The node embeddings from the last layer are aggregated using the global

mean:
V]

1
hg = — Y hl.
Vi ;

This global representation hg is then passed to the projector for HFMCA
pretraining or an MLP for downstream prediction tasks.

3 Experiments

3.1 HFMCA Pretraining

The GPS encoder was equipped with two projector heads required for the
HFMCA scheme. The model was trained for 200 epochs using the Adam op-
timizer [14] and a cosine decay learning rate schedule [16]. We used a learning
rate of 1 x 1073, a weight decay of 1 x 107%, and a batch size of 256.

The encoders trained with baseline methods (SimCLR, Barlow Twins, or
VICReg) and HFMCA were pretrained with REST [8] and ABIDE [9] datasets,
amounting to the total of 2005 data points. We also include a randomly initialized
encoder (Baseline) to verify that any sort of pretraining has an effect on the
encoder. After each pretraining session, the projectors were discarded. Linear
heads were then attached to the encoder outputs, and the models were fine-
tuned on their respective classification or regression tasks.

3.2 Fine-tuning

Following the approach of [3, 17, 30], we first train a linear classifier on top of
the frozen representations produced by our pretrained backbone across various
datasets. To further assess the fine-tuning capabilities of our pretrained models,
we repeat the experiments with the backbone unfrozen, allowing its weights to
be updated during training.

For experimental setups with a frozen encoder, we trained the output linear
layer using the Adam optimizer [14], with a learning rate of 1 x 10~2 and a batch
size of 256. For regression tasks, the learning rate was reduced to 1 x 1073.

When the encoder was unfrozen, both the encoder and the output layer were
trained jointly with Adam (learning rate 1 x 1072, batch size 256).
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We employed nested cross-validation, using a stratified 5-fold split for each
task. For each outer split, we further divided the four training folds into inner
training and validation sets. We ran the training algorithm with early stopping
(patience of 50 epochs) on the inner split to determine the optimal number of
training epochs. Once identified, the model was retrained on all four training
folds and evaluated on the held-out fifth fold. We ran this 10 times for each
experimental setup, each time with different seeds, and reported means and
standard variations.

REST REST AOMIC HCP
Model (MDD) (Se) ABIDE  BSNIP (Sex) (Sex)
Mjf;);lty 51.6 + 0.0 61.0+ 0.0 53.6 +0.0 27.1+0.0 51.9 + 0.0 55.5 4 0.0

Baseliner 55.5 £1.0 64.8 +1.1 53.5+ 16 30.7+ 04 569+ 13 63.0+ 2.4
VICRegr 56.6 £1.0 654 +05 535+13 295+06 600415 657415
BTr 57.3 £ 0.6 64.7 £ 0.7 53.5£1.7 29.5+ 0.3 60.9 £ 0.8 66.0 + 1.5
SimCLRr 559 £0.9 65.9 + 0.7 54.0 £ 1.0 309+ 0.3 59.2 £ 1.5 66.6 + 1.5

HFMCAF 57.4 + 0.9 65.7 + 1.054.7 £ 1.531.4 £ 0.4 594 + 1.1 66.0 £ 1.9

Table 1: The table presents the mean accuracies of frozen encoders, each paired
with a linear classification head, after pretraining with different techniques. Un-
derlined dataset names indicate O-shot data that was not encountered by the
models during pretraining. The model pretrained with HFMCA demonstrates
competitive performance with all baseline techniques across both seen and un-
seen datasets.

3.3 Quality of HFMCA Embeddings

H1 : The HFMCA pretrained encoder produces high-quality graph embeddings
that effectively capture semantic information relevant for fMRI graph classifica-
tion tasks.

To assess the quality of graph embeddings generated by our HFMCA pre-
trained encoder, we trained a single-layer MLP classifier on top of these em-
beddings using a variety of fMRI datasets, including REST [8], ABIDE [9],
BSNIP [23], AOMIC [22], HCP [25], and ADHD200 [4]. The evaluation tasks
spanned binary classification (sex, MDD, ASD), multi-class classification (bipo-
lar /schizophrenia), and age prediction (regression).

Table 1 shows that, with a linear classifier trained on frozen embeddings,
HFMCA achieves the highest or second-highest accuracy in five out of six clas-
sification tasks, consistently outperforming or matching established baselines.
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Model REST ABIDE ADHD200 AOMIC

Baseliner 153 £0.2 7.2+ 0.1 5.6 4+ 0.1 2.2 £ 0.0
VICRegr 1574+ 0.1 74 +0.1 5.4 +£ 0.0 2.2 + 0.0
BTr 16.0 £ 0.1 74 +0.1 5.4 £ 0.1 2.2 £+ 0.0
SimCLRF 15.0 £ 0.1 7.1 + 0.1 5.4 £ 0.1 2.2 + 0.0

HFMCAF 14.1 £ 0.1 7.1 £ 0.1 5.3 £ 0.1 2.2 + 0.0

Table 2: The table presents the mean MAE scores for age prediction of frozen
encoders. Each encoder is paired with a linear regression head, after pretrain-
ing with different techniques. Underlined dataset names indicate 0O-shot tasks
that were not encountered by the models during pretraining. The model pre-
trained with HFMCA demonstrates competitive performance with all baseline
techniques across both seen and unseen datasets.

Although improvements are sometimes modest, these results highlight the ro-
bustness of HFMCA across diverse datasets. For regression tasks (Table 2),
we observe similar trends, with HFMCA equaling or outperforming competing
methods.

When the encoder is unfrozen (Table 3), HFMCA maintains strong perfor-
mance, ranking first or second across all benchmarks, which further underscores
the robustness and generalizability of its learned representations.

These findings support H;, demonstrating that the HFMCA-pretrained
encoder generates graph embeddings that are highly informative and
transferable for downstream fMRI analysis tasks.

3.4 Transfer Learning

Ho : The HFMCA pretrained encoder produces graph embeddings that allow ef-
fective transfer learning across different fMRI graph classification tasks.

The BSNIP [23], AOMIC [22], ADHD200 [4], and HCP [25] datasets were not
seen by the model during pretraining. To assess whether transfer of knowledge
has occurred, we compare the performance of the pretrained HFMCA encoder
to a randomly initialized baseline on these datasets (Tables 1, 2, and 3).

Table 1 shows that the pretrained, frozen HFMCA model performs better
than the random baseline on all three classification datasets: BSNIP, AOMIC,
and HCP. The most significant accuracy improvement is seen on the AOMIC
dataset, while only a marginal increase is observed on BSNIP. Notably, the
HFMCA model consistently exhibits a smaller standard deviation across ten
runs, indicating greater stability in its performance. These results support the
hypothesis that pretrained encoder embeddings are superior to random embed-
dings in linear classification settings.

For the regression task of age prediction on ADHD200 and AOMIC (Table 2),
the HFMCA embeddings show a clear advantage on the ADHD200 dataset.
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REST REST AOMIC HCP
Model (MDD) (Sex) ABIDE BSNIP (Sex) (Sex)

Mif;);lty 51.6 £ 0.0 61.04 0.0 53.6 0.0 27.1 +0.0 51.94 0.0 55.5 + 0.0

Baseline 58.8 + 1.2 68.3 £ 0.4 549 £ 1.8 30.6 + 0.8 62.5 + 1.8 71.1 £+ 2.2
VICReg 58.7 £ 1.0 65.5+14 529+ 1.7 30.1 £04 60.5+ 1.7 66.0+ 3.2

BT 59.9+1.4 652+£15 535+1.0 300£04 603+14 66.1+£1.1
SimCLR 59.3 £ 1.2 68.4 +0.9 56.3 £ 1.3 30.5 £ 0.8 63.7 £ 1.8 68.2 £ 3.1

HFMCA 59.8 £ 1.270.3 £ 1.056.1 £ 1.6 30.3 + 0.7 64.6 £ 1.4 70.2 + 0.6

Table 3: The table presents the mean accuracies of unfrozen encoders with linear
classification heads, where the encoders were pretrained using various techniques.
Underlined dataset names indicate 0-shot data that was not encountered by the
models during pretraining. The HFMCA pretrained encoder demonstrates com-
petitive performance relative to the baselines, with particularly notable increases
in accuracy observed on the REST and AOMIC datasets.

However, on the AOMIC dataset, all models—including the baseline—achieve
similar results, suggesting limited transfer benefit in this case.

When the encoder is unfrozen (Table 3), performance differences become
less pronounced. On two out of three classification datasets (BSNIP and HCP),
the randomly initialized encoder slightly outperforms the HFMCA pretrained
encoder, although the latter’s results remain within the standard deviation of
the baseline. On the AOMIC dataset, the HFMCA encoder maintains a notable
advantage.

Across all evaluations, the HFMCA model demonstrates more consistent re-
sults, as reflected in smaller or comparable standard deviations of accuracy over
ten runs.

To summarize, the HFMCA pretrained encoder generally produces
embeddings that outperform those from random initialization, partic-
ularly in frozen linear evaluation. However, its benefit diminishes or
becomes dataset-dependent when the encoder is finetuned, suggesting
that transferability may vary depending on the downstream task and
dataset.

3.5 Data-Performance Scaling

Hs : The quality of HFMCA pretrained encoder embeddings improves with the
size of the pretraining dataset.

To investigate whether increasing pretraining dataset size improves the qual-
ity of HFMCA embeddings, we pretrained four HFMCA encoders using four
different datasets:

1. REST (1313 data points)
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REST REST AOMIC HCP
Model (MDD) (Sex) ABIDE  BSNIP (Sex) (Sex)
Mz‘f;;lty 51.6 + 0.0 61.0 = 0.0 53.6 0.0 27.1 £ 0.0 51.9 + 0.0 55.5 4 0.0
Rp 5754+ 1.0 653404 51.7+1.2 31.0+05 59.0+ 1.4 659+ 2.2

RAF 574 £09 657+ 1.0 54.7 +£1.531.4 £ 0.4 594 £ 1.1 66.0+ 1.9
RAHr 573 +£0.9 66.0+ 0.7 54.0+ 1.1 31.4 +£ 0.7 57.8 £ 2.2 64.2 £ 2.0
RAHBr 58.2 £ 0.6 66.6 = 1.0 53.4 £ 1.9 30.9 £ 0.6 60.8 £ 2.7 66.6 = 1.8

Table 4: Linear classifier with frozen encoders pretrained on different volumes
of data and fine-tuned for classification tasks. Combination of letters signify
different datasets used for pretraining: R - REST, A - ABIDE, H - HCP, B -
BSNIP.

Model ABIDE ADHD200 AOMIC REST

R Freeze 7.1 +£0.15.2+0.12.2+0.0 14.2+0.1
RA Freeze 7.1 £0.1 53+01 2.2 +£0.0 141 £0.1
RAH Freeze 7.0 £0.1 5.3 +0.1 2.2 + 0.0 14.1 0.1
RAHB Freeze 7.0 £ 0.1 5.1 + 0.1 2.2 + 0.0 13.9 £+ 0.1

Table 5: Linear classifier with frozen encoders pretrained on different volumes of
data and fine-tuned for regression tasks. Combination of letters signify different
datasets used for pretraining: R - REST, A - ABIDE, H - HCP, B - BSNIP.
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2. REST + ABIDE (2005 data points)
3. REST + ABIDE + HCP (2359 data points)
4. REST + ABIDE + HCP + BSNIP (4249 data points)

Then, we replicated the exact experimental setup used for H;, evaluating
each frozen encoder with a single-layer MLP classifier on top. The classifiers
were tested on the REST [8], ABIDE [9], BSNIP [23], AOMIC [22], HCP [25],
and ADHD200 [4] datasets for binary and multiclass classification, as well as
regression tasks.

For each encoder, we plotted its performance across all tasks. To empiri-
cally verify Hg, we expected to observe a logarithmic or linear relationship be-
tween pretraining dataset size and downstream performance. We anticipated the
largest performance increase after including the BSNIP dataset, as its size nearly
matches the combined size of the previous datasets. The results are visualized
in Figure 3.

Solid lines in the plots represent 0-shot scenarios—where the fine-tuning data
was not previously seen by the model during pretraining—while dotted lines
represent scenarios where the fine-tuning data was included in the pretraining
corpus.

For classification tasks (left panel; higher is better), we do not observe a clear
log- or linear scaling of accuracy with respect to data volume. On 4 out of 6 tasks,
there is a modest increase in accuracy when incorporating the REST+ABIDE
pretraining dataset. However, performance tends to decline after adding the HCP
and BSNIP datasets. In the 0-shot scenario (AOMIC), we observe a slight im-
provement upon including the BSNIP dataset, potentially indicating that larger
datasets could produce greater gains.

For regression tasks (right panel; lower is better), we observe small improve-
ments in 3 out of 4 tasks, most noticeably for the REST age prediction task.
However, there is no clear monotonic relationship between dataset size and per-
formance.

These results align with recent findings in graph foundation models: in self-
supervised learning for GNNs, pretraining schemes borrowed from language or
vision domains can lead to a negative transfer of knowledge [5, 12, 28]. We
attempted to mitigate this issue by using a Graph Transformer as our back-
bone, which, with its attention blocks, permits deeper architectures without
oversmoothing. However, as shown, this modification alone is insufficient.

Notably, [28] demonstrates that while naive scaling of data volume can de-
grade encoder performance, carefully selecting pretraining samples can lead to
better results. Consistent with this, we see performance improvements on the
REST, BSNIP, AOMIC, and ABIDE tasks after pretraining on the REST +
ABIDE combination.

In summary, our results suggest that simply increasing the size
of the pretraining dataset does not guarantee improved performance
for HFMCA encoders; the choice and composition of pretraining data
appear to play a more critical role.
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Fig. 3: Encoders were trained with HFMCA using varying amounts of pretraining
data and evaluated on both classification and regression tasks. In the plot, dashed
lines represent performance on datasets included during pretraining, while solid
lines indicate performance in the zero-shot scenario. No clear linear relationship
was observed between the amount of pretraining data and downstream perfor-
mance, which aligns with findings from recent studies. This outcome may be the
result of the introduction of noisy data during pretraining, which can reduce the
encoder’s overall effectiveness.

4 Discussion

4.1 Mutual Information and Comparison to Other Self-Supervised
Methods

We can inspect HFMCA through the lens of information theory, where we can
observe a clear link between HFMCA pretraining and other self-supervised meth-
ods mentioned in this paper.

Let us consider two Gaussian random variables X and Y. We can measure
their independence through Mutual Information, which is equal to:

1 detox det oy
I(X:Y)=-1 _
(X;Y) og( — )

: ©)

Where ox and oy are X and Y covariance matrices, and oxy is their joint
covariance matrix. If we parametrize X and Y and choose to maximize the
mutual information between them - for example if they represent two views of
the same object - this is equivalent to minimizing its negative:
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1

det ox det
—I(X;Y) = 5 log <eaxeay>

detoxy
1 1
=3 (logdet ox +logdet oy — logdet oxy) (10)

x logdet oxy — logdet ox — logdet oy

Which is very similar to the equation 7. HFMCA protocol relaxes the Gaus-
sian assumption on the random variables, and minimizing its loss 7 is equivalent
to maximizing mutual information.

Techniques such as SimCLR [7], Barlow Twins [30], and VICReg [3] all aim to
learn informative, non-collapsed self-supervised representations by maximizing
shared information between augmented views.

SimCLR does this indirectly through a contrastive InfoNCE loss that maxi-
mizes a lower bound on mutual information using positive and negative pairs.

In contrast, Barlow Twins and VICReg explicitly encourage disentangled,
diverse features by penalizing redundancy and promoting decorrelation within
embeddings—mechanisms closely related to maximizing the log-determinant of
covariance matrices, which corresponds to maximizing mutual information under
Gaussian assumptions.

The HFMCA loss, like the objectives used in VICReg, SimCLR, and Bar-
low Twins, is fundamentally connected to maximizing mutual information be-
tween augmented views—either directly, as in log-determinant or redundancy-
reduction losses, or indirectly through contrastive objectives.

All these self-supervised training approaches are designed to produce infor-
mative, diverse representations by encouraging high shared information while
preventing feature collapse, aligning their theoretical motivation with the max-
imization of mutual information between views.

4.2 Data Augmentation for Functional Connectivity Matrices

Figure 2 illustrates the variability of functional connectivity matrices across
datasets. Because these matrices are converted into adjacency matrices using
a simple thresholding approach, the resulting graphs can have similar structural
patterns but at different resolutions.

We hypothesize that downsampling functional connectivity matrices - reduc-
ing their resolution - could serve as a useful augmentation method. This approach
may facilitate incorporating new datasets into HFMCA training and encourage
the model to develop scale-invariance.

Another issue in data collection is that fMRI datasets, even when processed
with a consistent atlas, often permute the order of ROIs, which alters the struc-
ture of the connectivity matrices. While GNNs are theoretically permutation
invariant, this property is broken when the connectivity matrix itself is used as
node features (i.e., the input embeddings). Introducing node permutation as a
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data augmentation strategy may help the model become robust to such vari-
ations, restoring permutation invariance and improving its ability to recognize
underlying activity patterns.

In summary, employing downsampling and node permutation as data aug-
mentation techniques could enhance the generalizability and robustness of mod-
els trained on functional connectivity data.

5 Conclusions

In this work, we addressed key challenges in deep learning for fMRI data by
introducing a self-supervised Graph Transformer encoder, pretrained with the
Hierarchical Functional Maximal Correlation Algorithm (HFMCA). Our experi-
ments demonstrate the effectiveness of this approach across diverse resting-state
fMRI datasets and downstream neuroimaging tasks.

First, we showed that embeddings from the HFMCA-pretrained encoder are
highly informative and robust for various binary and multi-class classification
and regression tasks, supporting our first hypothesis (H;). These embeddings
consistently matched or exceeded strong baselines in most benchmark evalua-
tions, underscoring their utility for fMRI graph analysis.

Second, our results support the transferability of the pretrained HFMCA
encoder to novel, unseen datasets (Hs). In frozen linear evaluation settings,
the pretrained encoder provided more stable and often superior performance
compared to random initialization. However, this advantage diminished with
encoder fine-tuning and partly depended on the characteristics of the target
dataset and task.

Third, regarding the impact of pretraining dataset size (Hs), we did not ob-
serve a consistent positive scaling relationship between data volume and down-
stream performance. While certain combinations yielded modest improvements,
indiscriminate scaling sometimes resulted in negative transfer, aligning with re-
cent observations in graph representation learning.

Overall, our findings highlight the potential of HFMCA-based pretraining
for self-supervised representation learning in fMRI data. We establish its rela-
tionship to existing self-supervised techniques and empirically demonstrate its
robust performance relative to alternative methods. These results indicate that
HFMCA pretraining enables the learning of transferable, high-quality represen-
tations for fMRI graph data. Nevertheless, careful selection of pretraining data
and downstream tasks is essential to minimize negative transfer. Future work
should investigate strategies to mitigate negative transfer, such as advanced aug-
mentations of functional connectivity matrices. We hope our approach catalyzes
further research into scalable self-supervised methods for brain imaging and ac-
celerates the development of more generalizable brain decoding models.
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