
ADAPTING HFMCA TO GRAPH DATA: SELF-SUPERVISED LEARNING FOR
GENERALIZABLE FMRI REPRESENTATIONS
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ABSTRACT

Functional magnetic resonance imaging (fMRI) analy-
sis faces significant challenges due to limited dataset sizes
and domain variability between studies. Traditional self-
supervised learning methods inspired by computer vision
often rely on positive and negative sample pairs, which can
be problematic for neuroimaging data where defining ap-
propriate contrasts is non-trivial. We propose adapting a
recently developed Hierarchical Functional Maximal Corre-
lation Algorithm (HFMCA) to graph-structured fMRI data,
providing a theoretically grounded approach that measures
statistical dependence via density ratio decomposition in
a reproducing kernel Hilbert space (RKHS), and applies
HFMCA-based pretraining to learn robust and generaliz-
able representations. Evaluations across five neuroimag-
ing datasets demonstrate that our adapted method produces
competitive embeddings for various classification tasks and
enables effective knowledge transfer to unseen datasets.
Codebase and supplementary material can be found here:
https://github.com/fr30/mri-eigenencoder

Index Terms— HFMCA, self-supervised learning, graph
transformer, fMRI, representation learning

1. INTRODUCTION

Functional magnetic resonance imaging (fMRI) provides cru-
cial insights into human brain dynamics, with resting-state
functional connectivity serving as an important biomarker
for neurological and psychiatric conditions [1–3]. Yet, deep
learning applications face major challenges due to limited
dataset sizes, heterogeneous preprocessing protocols, and
persistent domain shifts across scanning centers.

Contrastive self-supervised learning (SSL) has offered
promising solutions by adapting approaches from computer
vision to neuroimaging data [4–7]. While some methods
operate directly on temporal blood oxygen level-dependent
(BOLD) signals [4, 6], graph-based approaches that model
functional connectivity matrices offer distinct advantages for
neuroimaging applications. Functional connectivity graphs
provide a more structured and interpretable representation of
brain organisation, capturing pairwise statistical dependen-
cies between brain regions whilst reducing the dimensionality

and complexity of the raw temporal signal space. Addition-
ally, graph-based augmentations such as node sampling and
edge perturbation preserve the underlying network topology.

A recently proposed Hierarchical Functional Maximal
Correlation Algorithm (HFMCA) [8], originally used for im-
age data, provides a theoretically principled approach with
strong potential to address these neuroimaging-specific chal-
lenges. Unlike contrastive methods that rely on explicit posi-
tive–negative sample construction [9, 10], HFMCA measures
statistical dependence between low- and high-level features
across multiple views without being limited to traditional
two-view frameworks [11, 12]. This multi-view capabil-
ity enables the capture of richer hierarchical dependencies,
leading to greater feature diversity and more generalizable
representations. HFMCA operates on graph-structured con-
nectivity rather than raw BOLD signals, exploiting brain net-
work topology to integrate complementary views of neural
activity, making it well-suited for neuroimaging representa-
tion learning.

Contributions: (1) We adapt HFMCA to graph-structured
fMRI data, representing the first application and extension
of this framework to brain connectivity networks. (2) We
demonstrate that HFMCA-pretrained encoders produce com-
petitive embeddings for neuroimaging classification tasks
across diverse datasets. (3) We show effective transfer learn-
ing capabilities, particularly in scenarios where limited la-
belled data is available. 4) We evaluate neural scaling laws
in the context of fMRI graph encoders, showing that naive
pretraining data scaling may induce negative transfer.

2. BACKGROUND

2.1. Functional Maximal Correlation Algorithm

The Functional Maximal Correlation Algorithm [8] measures
statistical dependence between random variables X and Y
through their probability distributions. For distributions p(X)
and p(Y ), statistical dependence is characterised by:

ρ(X,Y ) :=
p(X,Y )

p(X)p(Y )
. (1)

FMCA approximates this dependence by decomposing it into
eigenvalues σk and corresponding orthogonal eigenfunctions:
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ρ(X,Y ) =
p(X,Y )

p(X)p(Y )
≈

∑
k

√
σkφk(X)ψk(Y ) (2)

EX [φk(X)φk′(X)] = EX [ψk(Y )ψk′(Y )] =

{
1, k = k′

0, k ̸= k′

(3)

Two neural network encoders fθ : X → RK and gω :
Y → RK approximate the eigenfunctions φ and ψ respec-
tively. The autocorrelation matrices are computed as:

RF = EX [fθ(X)f⊤θ (X)], RG = EY [gω(Y )g⊤ω (Y )] (4)

PFG = EX,Y [fθ(X)g⊤ω (Y )] (5)

The joint autocorrelation matrix combines these compo-
nents:

RFG =

[
RF PFG

P⊤
FG RG

]
(6)

The FMCA objective maximises statistical dependence by
minimising:

LFMCA = log detRFG − log detRF − log detRG (7)

This formulation encourages orthogonal feature learning
(maximising log detRF and log detRG) while aligning rep-
resentations between views (minimising log detRFG).

Recently, FMCA has been employed in self-supervised
image representation learning via hierarchical mutual infor-
mation maximization [8], and in cross-modal representation
learning for EEG and EMG [13]. These applications demon-
strate FMCA’s capacity to capture statistical dependencies
across different data modalities and feature hierarchies. We
extend this framework to develop a self-supervised learning
scheme for functional correlation matrix graphs, where the
encoder learns semantically meaningful latent representations
of brain connectivity patterns.

3. METHODS

3.1. Problem formulation

Given a small labelled clinical dataset Dc = {(Xi, Yi)}Nc
i=1

and a large population dataset Dp = {Xj}
Np

j=1 with Np ≫
Nc, each subject is represented by a functional connectiv-
ity matrix Xi ∈ R|V |×|V |, computed over |V | atlas-defined
brain regions. Each Xi encodes the pairwise statistical de-
pendencies of regional BOLD signals and is modelled as a
weighted graph on |V | nodes. The clinical label Yi ∈ {0, 1}
indicates a binary diagnosis assigned by clinicians for a spe-
cific disorder. The objective is to learn a predictive model
f : R|V |×|V | → {0, 1} defined on the clinical dataset. Train-
ing f directly on Dc is susceptible to overfitting due to the
limited sample size and variability in labels and data quality.

Fig. 1. HFMCA learns representations by maximising the
statistical dependence between low- and high-level features
of the graph. Each subsampling augmentation (e.g., ran-
dom walk sampling) is processed through a shared back-
bone f1θ , producing low-level features. These features are
either projected individually through a local head ZL =
[f2ω ◦ f1θ (Y1) . . . f2ω ◦ f1θ (YT )] or jointly aggregated through a
high-level head ZH =

∑T
i f

3
ω′

i
◦ f1θ (Yi). In pretraining, both

projection heads are used to enforce multi-view consistency,
while only the backbone is retained for downstream tasks.

To address this, we pretrain a neural encoder f1θ on Dp

with a self-supervised objective to obtain semantically mean-
ingful latent representations Z from connectivity graphs,
which are then fine-tuned on Dc for diagnostic prediction.

3.2. Graph Construction from fMRI Data

We preprocess resting-state fMRI recordings by parcellating
each subject’s brain into 116 anatomical regions using the
AAL116 atlas [14]. For each region of interest, we extract
mean BOLD time series and compute Pearson correlation co-
efficients between all region pairs, yielding symmetric 116×
116 functional connectivity matrices. To build graphs for neu-
ral network processing, we retain the top |V |2

400 correlation co-
efficients as edges, using connectivity values as node features.
That is, for each network G, the feature of node k is defined
as Xk = [ρk1, . . . , ρk|V|]

T ∈ R|V|, where ρkq is the Pearson
correlation between BOLD signals at nodes k and q.

3.3. Hierarchical FMCA with Graphs

Motivated by the original framework developed for image
classification [8], we extend HFMCA to graph-structured
fMRI data. HFMCA models dependencies between hier-
archical feature representations of brain regions rather than
pairwise correlations between different data views. Given a
source graph X and T augmentations Y = {Y1, Y2 . . . , YT }
where Yi = Ti(X), the method defines:
Low-level features: ZL = {ZL

t }Tt=1 from individual aug-
mentation representations Z.
High-level features: ZH from aggregated augmentation



representations Z.
The hierarchical dependence is modelled as:

ρ(ZL, ZH) =
p(ZL, ZH)

p(ZL)p(ZH)
. (8)

Three network components extract these features: back-
bone encoder f1θ , and projection heads f2ω and f3ω′ (Figure
1). For each brain connectivity graph X with augmenta-
tions Y = {Y1, . . . , YL}, where Yi = Ti(X), the set of
embeddings is defined as Z = {f1θ (Y1), . . . , f1θ (YT )}. These
features are passed through the projection heads:

Low-level projection: ZL = [f2ω ◦f1θ (Y1) . . . f2ω ◦f1θ (YT )],
High-level projection: ZH =

∑T
i=1 f

3
ω′

i
◦ f1θ (Yi).

The hierarchical autocorrelation matrices become:

RL = E[ZL(ZL)⊤], RH = E[ZH(ZH)⊤], (9)

PLH = E[ZL(ZH)⊤], RLH =

[
RL PLH

P⊤
LH RH

]
. (10)

The training objective minimises:

LHFMCA = log detRLH − log detRL− log detRH . (11)

Our augmentation strategy employs graph-specific trans-
formations including random walk sampling, node dropping,
feature masking, and edge removal. After pretraining, projec-
tion heads are discarded and only the backbone encoder f1θ is
retained for downstream classification tasks.

3.4. Graph Transformer Architecture

We employ a Graph Transformer backbone based on the GPS
architecture [15], which combines local neighbourhood in-
formation via message-passing with global attention mech-
anisms. The architecture incorporates Random Walk Posi-
tional Encodings [16] to preserve structural relationships be-
tween brain regions. After processing through multiple trans-
former layers, node embeddings are aggregated using global
mean pooling to produce graph-level representations.

4. EXPERIMENTS

4.1. Datasets and Tasks

We evaluate our approach on five neuroimaging datasets rep-
resenting diverse classification challenges:
REST [17]: Major Depressive Disorder and sex classifi-
cation (1642 subjects; 51.6% Healthy/MDD ratio; 61.0%
Male/Female ratio)
ABIDE [18]: Autism Spectrum Disorder classification (866
subjects; 53.6% Healthy/ASD ratio)
BSNIP [19]: Schizophrenia (SZ) and Bipolar Disorder
with Psychosis (BP) (1464 subjects; 43.7%/34.2%/22.1%

Model
REST

(MDD)
REST
(Sex) ABIDE

Majority
class 51.6 ± 0.0 61.0 ± 0.0 53.6 ± 0.0

BaselineF 55.5 ± 1.0 64.8 ± 1.1 53.5 ± 1.6
VICRegF 56.6 ± 1.0 65.4 ± 0.5 53.5 ± 1.3
BTF 57.3 ± 0.6 64.7 ± 0.7 53.5 ± 1.7
SimCLRF 55.9 ± 0.9 65.9 ± 0.7 54.0 ± 1.0

HFMCAF 57.4 ± 0.9 66.6 ± 1.3 54.7 ± 1.5

Table 1. Classification accuracy (%) with frozen encoders on
datasets seen during pretraining.

Model
REST

(MDD)
REST
(Sex) ABIDE

Majority
class 51.6 ± 0.0 61.0 ± 0.0 53.6 ± 0.0

Baseline 58.8 ± 1.2 68.3 ± 0.4 54.9 ± 1.8
VICReg 58.7 ± 1.0 65.5 ± 1.4 52.9 ± 1.7

BT 59.9 ± 1.4 65.2 ± 1.5 53.5 ± 1.0
SimCLR 59.3 ± 1.2 68.4 ± 0.9 56.3 ± 1.3

HFMCA 59.8 ± 1.2 70.3 ± 1.0 56.1 ± 1.6

Table 2. Classification accuracy (%) with unfrozen encoders
on previously seen datasets.

Healthy/SZ/BP ratio)
AOMIC [20]: Sex classification (881 subjects; 51.9% Male/
Female ratio)
HCP [21]: Sex classification (443 subjects; 55.5% Male/
Female ratio) Models are pretrained on REST and ABIDE
datasets (2005 subjects total), then evaluated on all datasets
including previously unseen ones (BSNIP, AOMIC, HCP).

4.2. Training Protocol and Evaluation

The GPS encoder is equipped with two projection heads re-
quired for HFMCA training. We train for 200 epochs using
Adam optimiser with learning rate 10−3, weight decay 10−6,
and batch size 256. The model is pretrained on a combined
REST and ABIDE dataset, comprising approximately 2500
samples. After pretraining, projection heads are discarded
and only the backbone encoder is retained for downstream
evaluation.

We compare HFMCA against established self-supervised
baselines: SimCLR [9], Barlow Twins [11], VICReg [12],
and a randomly initialised Baseline. Following standard prac-
tice [12, 22], we evaluate both frozen and unfrozen scenar-
ios using nested 5-fold cross-validation with 10 independent
runs.



Model BSNIP AOMIC
(Sex)

HCP
(Sex)

Majority
class 43.7 ± 0.0 51.9 ± 0.0 55.5 ± 0.0

BaselineF 47.7 ± 0.9 56.9 ± 1.3 63.0 ± 2.4
VICRegF 46.4 ± 0.9 60.0 ± 1.5 65.7 ± 1.5
BTF 46.2 ± 1.2 60.9 ± 0.8 66.0 ± 1.5
SimCLRF 47.9 ± 0.5 59.2 ± 1.5 66.6 ± 1.5

HFMCAF 48.7 ± 0.8 59.4 ± 1.1 66.0 ± 1.9

Table 3. Classification accuracy (%) with frozen encoders on
previously unseen datasets.

Model BSNIP AOMIC
(Sex)

HCP
(Sex)

Majority
class 43.7 ± 0.0 51.9 ± 0.0 55.5 ± 0.0

Baseline 47.8 ± 0.8 62.5 ± 1.8 71.1 ± 2.2
VICReg 47.1 ± 1.0 60.5 ± 1.7 66.0 ± 3.2

BT 47.2 ± 1.2 60.3 ± 1.4 66.1 ± 1.1
SimCLR 48.7 ± 0.6 63.7 ± 1.8 68.2 ± 3.1

HFMCA 48.4 ± 0.8 64.6 ± 1.4 70.2 ± 0.6

Table 4. Zero-shot classification accuracy (%) with unfrozen
encoders.

4.3. Quality of Learned Representations

To assess the quality of the learned representations, we attach
a trainable linear classifier on top of the frozen graph encoder
embeddings and evaluate performance on multiple classifica-
tion tasks (Table 1). We also unfreeze the encoder and fine-
tune it on the same downstream tasks (Table 2). HFMCA
achieves competitive results across all benchmarks, demon-
strating more consistent performance across runs.

4.4. Transfer Learning Evaluation

To evaluate the transferability of the HFMCA encoder, we
fine-tune both frozen and unfrozen variants with attached lin-
ear heads on tasks outside the pretraining datasets. The re-
sults (Tables 3 and 4) show that HFMCA consistently out-
performs random initialization (Baseline) and remains com-
petitive with other methods. Notably, it achieves more stable
performance on average, exhibiting lower variance across ex-
perimental runs.

4.5. Scaling Laws

To investigate whether pretraining performance scales with
dataset size, we pretrained HFMCA encoders on progres-
sively larger datasets: REST (1313 subjects), REST +
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Fig. 2. Encoders were trained with HFMCA using vary-
ing amounts of pretraining data and fine-tuned with linear
heads. No clear linear relationship was observed between
the amount of pretraining data and downstream performance,
which aligns with findings from recent studies.

ABIDE (2179 subjects), REST + ABIDE + HCP (2622
subjects), and REST + ABIDE + HCP + BSNIP (4512 sub-
jects). Each encoder was evaluated using frozen linear heads
across all downstream tasks following the protocol from Sec-
tion 4.3. Figure 2 shows that contrary to established scaling
laws [23, 24], performance does not improve monotonically
with increased data volume. Performance peaks with REST +
ABIDE but declines when adding HCP and BSNIP datasets.
This aligns with recent findings that naive scaling can pro-
duce negative transfer effects in graph foundation models
[25, 26].

5. CONCLUSION

We successfully extended HFMCA to graph-structured fMRI
data, providing a theoretically principled approach to self-
supervised representation learning. Our method achieves
competitive performance across five neuroimaging datasets.
The demonstrated transfer learning capabilities and stable
training make HFMCA particularly suitable for neuroimag-
ing applications. Future work should explore larger-scale
datasets and investigate HFMCA as a component of foun-
dational models for brain imaging. Even though the initial
scaling law analysis suggests greater complexity compared
to text and vision domains, the framework and transferability
indicate important contributions toward generalizable com-
putational models of brain function.
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