
Dynamic adjusting of neighbourhood sample size
with GRAPES

Jakub Frac1

Vrije Universiteit Amsterdam

Abstract. Graph neural networks (GNNs) utilize the concept of ag-
gregating information from neighboring nodes to learn node representa-
tions within a graph. However, as these networks become deeper, their
receptive field — the range of neighborhood information they aggre-
gate — exponentially increases, leading to significant memory require-
ments. To address this, graph sampling techniques have been developed
to reduce memory consumption by selecting a subset of nodes from
the graph, enabling GNNs to handle larger graphs efficiently. Tradi-
tional sampling techniques often rely on static heuristics that might not
be effective across various graph structures or tasks. To overcome this
limitation, GRAPES was proposed, an adaptive graph sampling strat-
egy that dynamically selects important nodes critical for training GNN
classifiers. GRAPES leverages a GFlowNet to dynamically adjust node
sampling probabilities based on the specific goals of classification. To
further develop this technique, we propose dynamic adjusting of sam-
ple size regulated by a hyperparameter, based on models confidence
about certain nodes. It shows similar or worse performance to origi-
nal GRAPES on a subset of original datasets. The code is available at:
github.com/fr30/grapes-reproduction

1 Introduction

Graph sampling addresses the scalability issue in Graph Neural Networks (GNNs)
by selecting a subset of nodes from the graph without considering their features
or the specific training task.

The majority of existing graph sampling techniques prioritize mirroring the
behavior of a fully-batched GNN, using an indirect strategy to achieve high
accuracy ([2] [3] [4] [5]).

Younesian et al. [1] introduced an adaptive sampling strategy that allows the
model to adjust to the task at hand, selectively sampling nodes that contribute
to a highly accurate GNN performance. A notable aspect of this method is the
use of a hyperparameter to control the size of the neighborhood sampling, which
remains constant during the training phase.

We claim that the sampling model has the capability to identify the nodes
that are crucial for achieving high accuracy and to filter out those that contribute
only noise. As a result, we propose a method that selects a subset of sampled
nodes based on the model’s confidence in its selections.

github.com/fr30/grapes-reproduction

2 Jakub Frac

2 Background

2.1 Graph Convolution Networks

Consider an undirected graph GC = (V,E), comprising a set of N nodes V
and edges E. The adjacency matrix A of 0s and 1s, signifies the existence of
links between node pairs. The row-normalized adjacency matrix with self-loops,
denoted by Â = D̃−1Ã, is obtained by adding self-loops to A (resulting in
Ã = A+I) and then normalizing by D̃, the degree matrix of Ã. The original paper
[1] focused on the Graph Convolutional Network (GCN) model as described by
Kipf ([?]), so we are going to use the same methodology.

The feature matrixX represents the features associated with the nodes, while
Y contains the labels for a subset of nodes Vt ⊆ V that are labeled.

The computation at the l-th layer of a GCN is defined as H l = σ(ÃH l−1W l),
where W l is weight matrix for the l-th layer, σ represents a nonlinear activa-
tion function, and the output represents the number of target classes. For an
individual node vi ∈ V , this equation describes the update mechanism:

hl
vi = σ

 ∑
vj∈N (vi)

Âvi,vjh
l−1
vj W l

where N (vi) is the set of vi’s neighbors, and Âvi,vj refers to the element

(vi, vj) of Â.

With an increase in the number of layers, the neighborhood’s size experiences
exponential growth as the layer count rises. Previous works aim to mitigate this
exponential increase by exploring graph sampling techniques. A particular focus
is given to layer-wise sampling. Initially, target nodes are segmented into mini-
batches of size b. Subsequently, at each layer, k nodes are selected from the
neighbors of nodes from the preceding layer. Thus, the approximation for the
l-th layer update of node vi can be represented as:

h̃l
vi = σ

 ∑
vj∈Kl

Â′l
vi,vj h̃

l−1
vj W l

where Kl ⊆ N (Kl−1) denotes the set of nodes sampled in layer l, and

N (Kl−1) indicates the neighbors of the nodes in Kl−1. K0 is the initial mini-
batch of target nodes and Â′l(vi, vj) represents the row-normalized value of the
sampled adjacency matrix A′l for layer l, where A′l(vi, vj) = 1 if vj is sampled,
i.e., vj ∈ Kl, and 0 otherwise.

In the previous works ([1], [3], [4], [2], [5]) ∀l|Kl −Kl−1| = k, meaning that
k nodes are additionally sampled for each layer. In our extension this number
changes across layers, but is bounded between [1, k].

Dynamic adjusting of neighbourhood sample size with GRAPES 3

2.2 Generative Flow Networks

Define a GFlowNet learning scenario as a tuple GF = (S,A, S0, Sf , R), where
S represents a finite collection of states forming a directed graph connected by
A, a set of directed edges symbolizing actions or transitions among states. The
subset S0 ⊂ S consists of initial states, Sf ⊂ S dfeines the terminating states,
and R : Sf → R+ is the reward function applied to terminating states. At any
given time t, an action at ∈ A facilitates the transition from state st to st+1. A
trajectory τ defines a sequence from an initial state s0 to a terminating state
sn ∈ Sf , expressed as τ = (s0 → . . . → sn).

In this framework, a GFlowNet is tasked with learning transitions from s0
to a rewarding terminating state R(sn). The objective is to model the forward
transition probabilities PF (st+1|st) to reflect the provided rewards, as suggested
by [6]. The Trajectory Balance (TB) loss, formulated by [7], is introduced. For
any given trajectory τ = (s0 → . . . → sn) loss is computed as follows:

LTB(τ) =

(
logZ(s0)− log

∏n
t=1 PF (st|st−1)∏n
t=1 PB(st−1|st)

R(sn)

)2

,

Here, Z : S0 → R+ estimates the network’s total flow from the initial state
s0, with PF and PB representing the neural network-parameterized forward and
backward state transition probabilities, respectively ([7]).

2.3 GRAPES

Fig. 1. A high-level schematic diagram of GRAPES from the original work [1].

Training
GRAPES [1] rephrased the problem of finding optimal neighbourhoods of size k
as a reinforcement learning problem. In that case each state s ∈ S is a sequence
of sampled adjacency matrices (A0, . . . , AL), where Ai ⊂ A and L is a number
of sampling layers, also corresponding to the number of GCN layers.

The reward for each trajectory of length L is defined as:

R(sL) = R(A0, . . . , AL) = exp (−α · LGCNC(A0, . . . , AL))

4 Jakub Frac

Where LGCN is a classification loss and α is a scaling parameter.
In the said scenario a deep neural network (in this caso also a GCN) will

try to model the forward probability PF and the network’s total flow, which
uniquely identifies a Markovian Flow Network [7].

More precisely, the GFlowNet is tasked with estimating the probability pi,
for each i ∈ {1, . . . , n}, that a given node vi within the neighborhood of Kl will
be selected for inclusion in Vl+1, the set of nodes sampled for the subsequent
layer l + 1.

This selection probability is modeled using a Bernoulli distribution. Conse-
quently, the forward transition probability from layer l to layer l + 1 is given
by:

PF (sl+1|sl) =
∏

vi∈Vl+1

pi
∏

vi∈N (Kl)\Vl+1

(1− pi)

When it comes to approximating backward probability PB , GRAPES [1] uses
a trick of concatenating indicator features to previous layer’s embeddings, such
that for each trajectory there is only one path to go from terminating state to
the start state. This, in turn, transforms GFlowNet graph from a DAG into a
directed tree.

As a result, the backward probability turns to constant PB = 1 and does not
require any modelling.

Sampling
In the original work [1] k nodes are aimed to be sampled without replacement.
However, the forward probability distribution PF consists of n independent
Bernoulli trials, making the exact sampling of k nodes from this distribution
unlikely.

Instead, the Gumbel-max trick [8] is utilized, whether a set of nodes V k
l is

selected by perturbing the log-probabilities randomly and selecting the top-k
values:

V k
l = topk(log p1 +G1, . . . , log pn +Gn), Gi ∼ Gumbel(0, 1)

3 Varying sample size

It can be observed that sometimes smaller sample size yield better results than
larger ones [3], [1]. We hypothesize, that large neighbourhood for each node
introduces unnecessary noise. We can also observe a huge drop in performance
when models are evaluated in the same way as they were trained - in minibatches
instead of full batch.

Several methods tried to mitigate this problem by reducing variance in sam-
pled neighbourhoods [4]. Intuitively, one can also assume that GRAPES [1] would
choose optimal neighbourhoods, reducing the information-to-noise ratio. How-
ever, with a fixed sample size each of those methods is forced to choose some
nodes that introduce the harmful noise.

Dynamic adjusting of neighbourhood sample size with GRAPES 5

To mitigate that, we introduce a procedure that allows model to discard
the nodes that have low probabilites of being included during the sampling
procedure. Namely, knowing that PF models Bernoulli distribution for each node
being included in the next layer, before the sampling occurs we will remove the
nodes with small probability of inclusion.

The new set of nodes considered during sampling will be defined as follows:

V ′
i = {vi : vi ∈ V i and pi > β}

Where β is a cutoff parameter defined by the user.
During the initial states of training the model obviously can not be sure

whether to include a node or not, as the GFlowNet has not modeled the proba-
bility distribution yet. Therefore, if V ′

i is an empty set, we use Vi instead.

4 Experiments

4.1 Experimental setup

We wanted to use the same experimental setup as in the original work [1].
Namely, we will use two layers of GCN with ReLU activation function for both
classification and GFlowNet networks. The models are evaluated on a small sub-
set of original GRAPES datasets for node classification task: Cora, Citeseer and
Pubmed.

4.2 Evaluation protocol

To provide a fair comparison, we will use fine-tuned GRAPES from the source
code provided by the authors [1]. We will introduce a change, such that testing
is conducted in minibatch fashion and compare the final accuracies for both
models.

As for our method, it requires a cutoff parameter β to be tuned, and through
experiments we found out that the best results yields β = 0.9.

On top of that we will also compare both methods against uniform random
sampling, which will serve as a sort of baseline. Basically the methods samples
nodes from outermost layers in a uniform fashion - each node has the same
probability of being sampled.

For each of the models we will also seperately finetune the number of training
epochs for each dataset, to provide the fairest comparison.

4.3 Results

We present accuracy scores for all three models, two configurations for each
one in the table 4.3. As we can see, our method does not manage to reliably
outperform GRAPES or even uniform sampling.

The biggest difference can be seen when all models are evaluated on dataset
Cora, with GRAPES providing the biggest increase in accuracy, while our method

6 Jakub Frac

performs similarly to the baseline. Also in case of Pubmed, GRAPES seems to
outperform all the other methods by a small margin.

What’s more interesting, is that uniform sampler seems to perform quite well
or even comparably well to both GRAPES and our methods in some scenarios.
In case of Citeseer none of the models seems to have a strong upper hand.

Generally our sampling method does not seem to provide any useful advan-
tage over the original original work (GRAPES).

Method Cora Citeseer Pubmed

Uniform16 75.30 ± 0.61 75.24 ± 0.47 87.75 ± 0.13

Uniform128 73.21 ± 0.74 74.09 ± 0.55 88.03 ± 0.20

GRAPES16 79.27 ± 0.82 75.98 ± 0.53 89.04 ± 0.29

GRAPES128 82.33 ± 0.38 76.01 ± 0.48 88.73 ± 0.40

ours16 74.77 ± 0.56 76.19 ± 0.29 87.82 ± 0.18

ours128 74.27 ± 1.03 75.68 ± 0.59 87.89 ± 0.26
Table 1. Accuracy on Cora, Citeseer, and Pubmed datasets.

5 Further work

5.1 Sampling procedure

The idea of training the model with adaptable sample size for each neighbour-
hood sounds like an interesting area for further research. We have to admit that
this particular implementation of it had a few rough edges - there is no solid
theoretical reason to cut off nodes with small Bernoulli distribution parameters.

5.2 Planetoid datasets

Given the fact how well uniform sampling performs, perhaps it is worth inves-
tigating credibility of the Planetoid datasets - they manage to provide a proof
of work that one’s algorithm works at all, but they do not seem to provide a
reliable proof of one method’s advantage over the other one.

5.3 Minibatch vs Full batch testing gap

Plenty of works ([1], [3], [2], [5]) perform training with sampling and testing
with full batch. Probably in many practical scenarios it is required for a model
to have the same setup during inference as in training.

It is noteworthy that there exists a huge gap in accuracy between full batch
and minibatch testing and perhaps those results should also be included in fur-
ther works.

Dynamic adjusting of neighbourhood sample size with GRAPES 7

References

1. Taraneh Younesian, Thiviyan Thanapalasingam, Emile van Krieken, Daniel Daza,
Peter Bloem. GRAPES: Learning to Sample Graphs for Scalable Graph Neural
Networks.

2. Jie Chen, Tengfei Ma, and Cao Xiao. FastGCN: Fast learning with graph convolu-
tional networks via importance sampling. In 6th International Conference on Learn-
ing Representations, ICLR 2018, Conference Track Proceedings. OpenReview.net,
2018b.

3. Difan Zou, Ziniu Hu, Yewen Wang, Song Jiang, Yizhou Sun, and Quanquan Gu.
Layer-dependent importance sampling for training deep and large graph convolu-
tional networks. In Advances in Neural Information Processing Systems 32: Annual
Conference on Neural Information Processing Systems 2019, NeurIPS 2019, pp.
11247–11256, 2019.

4. Wenbing Huang, Tong Zhang, Yu Rong, and Junzhou Huang. Adaptive sampling to-
wards fast graph representation learning. Advances in neural information processing
systems, 31, 2018.

5. Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor
Prasanna. Graph- SAINT: Graph sampling based inductive learning method. arXiv
preprint arXiv:1907.04931, 2019.

6. Emmanuel Bengio, Moksh Jain, Maksym Korablyov, Doina Precup, and Yoshua
Bengio. Flow network based generative models for non-iterative diverse candidate
generation. Advances in Neural Information Processing Systems, 34:27381–27394,
2021a

7. Yoshua Bengio, Salem Lahlou, Tristan Deleu, Edward J Hu, Mo Tiwari, and Em-
manuel Bengio. Gflownet foundations. arXiv preprint arXiv:2111.09266, 2021b

8. Iris AM Huijben, Wouter Kool, Max B Paulus, and Ruud JG Van Sloun. A re-
view of the gumbel-max trick and its extensions for discrete stochasticity in ma-
chine learning. IEEE Transactions on Pattern Analysis and Machine Intelligence,
45(2):1353–1371, 2022

	Dynamic adjusting of neighbourhood sample size with GRAPES

