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Abstract

Efficient Minimum Word Error Rate Training for Attention-Based Models

The task of speech transduction is converting speech from the audio domain into a text rep-

resentation. With recent technological advancements, it became possible to apply highly

computationally complex Deep Learning models to handle the task of speech transduc-

tion. The said solutions operate on the assumption that given enough training examples,

the model is able to learn the correct mapping itself. One of the dominant Deep Learn-

ing architectures used for this purpose is the attention-based Recurrent Neural Network

Transducer (RNN-T).

RNN-T model is typically trained to optimize a cross-entropy criterion corresponding

to improving the log-likelihood of the data. However, the model is usually evaluated

using a different metric, namely the Word Error Rate (WER). In this thesis, we present

a TensorFlow implementation of an alternative training procedure allowing for direct

optimization of the latter metric. Moreover, we incorporate in the solution a modified

version of RNN-T Loss, called Monotonic RNN-T Loss, which is used to regularize the

novel training procedure. The Monotonic RNN-T loss, as opposed to standard RNN-T,

enforces strictly monotonic alignments between the input and output sequences allowing

for faster decoding, crucial for MWER training.

The modified training routine is fully integrated with an open-source Automatic Speech

Recognition toolkit TensorFlowASR, which allows for end-to-end MWER training. Specif-

ically, a user is able to train a speech transduction solution on a custom dataset using a

training procedure that directly optimizes the WER metric with minimal configuration.

The solution was experimentally evaluated on the public domain dataset LibriSpeech

and the results, measured as relative improvement of WER, were found to be consistent

with the outcomes reported by the research community.

Keywords: sequence-to-sequence models, attention models, minimum word error rate

training, recurrent neural network transducer





Streszczenie

Efektywne uczenie w zakresie minimalnego współczynnika błędów słownych w modelach

opartych na uwadze

Transdukcja mowy polega na przekształceniu mowy z dziedziny audio na reprezentację

tekstową. Dzięki ostatniemu postępowi technologicznemu możliwe stało się zastosowa-

nie bardzo złożonych obliczeniowo modeli głębokiego uczenia (ang. Deep Learning) do

zadania przetwarzania mowy. Jedną z dominujących architektur głębokiego uczenia wy-

korzystywanych w tym celu jest Recurrent Neural Network Transducer (RNN-T) oparty

o mechanizm uwagi.

Model RNN-T jest zwykle trenowany w celu optymalizacji kryterium entropii krzy-

żowej odpowiadającego poprawie log-prawdopodobieństwa danych. Jednakże model ten

jest zwykle oceniany przy użyciu innej metryki, a mianowicie współczynnika błędu słów

(ang. Word Error Rate, WER). W niniejszej pracy przedstawiamy implementację alter-

natywnej procedury treningowej w TensorFlow, pozwalającej na bezpośrednią optymali-

zację tej ostatniej metryki. Ponadto, w rozwiązaniu zastosowano zmodyfikowaną wersję

straty RNN-T, zwaną Monotoniczną stratą RNN-T, która służy do regularyzacji nowej

procedury treningowej. Monotoniczna strata RNN-T, w przeciwieństwie do standardowej

RNN-T, wymusza ściśle monotoniczne dopasowanie sekwencji wejściowych i wyjściowych,

co pozwala na szybsze dekodowanie, kluczowe dla treningu MWER.

Zmodyfikowana procedura treningowa jest w pełni zintegrowana z otwartym zestawem

narzędzi do automatycznego rozpoznawania mowy TensorFlowASR, co pozwala przepro-

wadzić end-to-end trening za pomocą MWER. W szczególności, użytkownik jest w sta-

nie trenować rozwiązanie do trandukcji mowy na dowolnym zbiorze danych za pomocą

procedury treningowej, która bezpośrednio optymalizuje metrykę WER przy minimalnej

konfiguracji.

Rozwiązanie to zostało eksperymentalnie ocenione na zbiorze danych LibriSpeech

należącym do domeny publicznej, a wyniki, mierzone jako względna poprawa wskaźnika

WER, okazały się zgodne z rezultatami podawanymi przez środowisko naukowe.

Słowa kluczowe: modele sekwencyjne, modele oparte na mechanizmie uwagi, minimalna

stopa błędu słow
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Introduction

The content of this work is grounded on the recent developments in the field of Deep Learning

Automatic Speech Recognition. In order to fully describe the aim of the project, we utilize field

related terminology. Below the reader may find a concise introduction to the covered topics.

Automatic Speech Recognition is a subfield of computer science related to recognizing human

speech and translating it into text. In this work we are particularly interested in the speech

to text translation. That is given an audio sample of human voice we desire to output a text

representation of the uttered sentence.

Deep Learning

Historically, many approaches were proposed for the purpose of speech transduction, the one

we are focusing on is sequence transduction using machine learning, an algorithm that acquires

its own knowledge by extracting patterns from raw data. A machine learning solution tries to

learn a mapping from certain data representation to the output [2]. Sometimes the task is so

complex that learning directly the mapping is impossible, then we may stack multiple machine

learning solutions to tackle the problem, this approach is known as deep learning.

Deep learning is a machine learning method utilizing deep stacks of artificial neural networks.

Each layer, a set of artificial neurons, can be thought of as a mapping transforming an element

of its input space into an element of its output space. The stack of layers, referred to as machine

learning model, is then nothing more than a composition of mappings. In the ASR case, we wish

to create a model capable of transforming audio representation into text and train it to obtain

optimal mapping.

In order to train the model, we use supervised learning. That is during each learning step a

model is presented with an input and a true output (referred to as a label). The model then maps

the input to the element of the output space and compares the result with the target output.

In order to measure how accurate the mapping is, a ’loss function’ is used. The loss function

represents the distance between the models prediction and the label. The goal of the training is
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to minimise this distance, that is minimise the loss function with respect to the model weights.

To achieve this a gradient descent technique is employed, at each learning step a gradient is

computed and used to update the weights.

Speech to text transduction

Audio sequence transduction is a process of converting human speech into text. Specifically

the task consists of transforming recorded audio from wave form into a sequence of text tokens.

The input audio is preprocessed into a sequence of input vectors, each vector contains infor-

mation about a short window of audio. The output text tokes are word pieces from the language

the output sequence belongs to. The goal of the deep learning solution is to a find a mapping

between the elements of the input space and word pieces from the output space.

In order to train a transducer model, we would need to know the alignment between the input

sequence and the output sequence, in other words each tiny audio piece would need to have its

own label attached. This would be extremely costly, as audio can be sampled with very high

rate. The desired effect is to be able to train a sequence transducer in an alignment agnostic way,

this way the only necessary label for an audio piece is a transcription of uttered speech. In order

to allow for such training, the Recurrent Neural Network Transducer (RNN-T) architecture was

proposed.

RNN-T

RNN-T allows for considering all the possible alignments of input and output sequences during

training. In order to represent different alignments an additional blank token (’null’ mapping)

is introduced; henceforth denoted as ∅. Different alignments of the same sequence are then

the same word pieces with blank symbols between them. Figure (1) demonstrates an example of

how different alignments look like. Enumerating all the possible alignments would be intractable,

however in order to compute the loss value we can utilize a simple efficient dynamic programming

algorithm.

A detailed presentation of RNN-T architecture is given in the next chapter, for now it is

sufficient to notice that minimising the RNN-T loss is equivalent to minimising the conditional

probability of outputting correct sentence transcription, given a set of audio features. However,

the performance of these models is measured in completely different manner, namely by Word

12
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Figure 1: Different alignments of the word ’cat’

Error Rate (WER), which is – to put it simply – an edit distance for sentences. The WER

between output of model and the sample label is a score for a single sample.

MWER

Recent papers by Prabhavalkar et. al. [10] and Guo et. al.[7] showed that it is possible to

replace the cross entropy loss with a loss function based on WER. That is instead of minimising

the conditional probability of outputting correct sentence transcription given set of audio fea-

tures, we can directly minimise the expected value of word errors in the conditional probability

distribution generated by the model. This procedure is known as Minimum Word Error Rate

Training (MWER). The new training regime was found to improve the performance of the model,

measured as improvement of the WER metric.

Monotonic RNN-T Loss

RNN-T model is capable of streaming recognition. Empirical studies found an undesired

phenomenon in streaming recognition where the model does not output anything for a little

while, and suddenly outputs multiple labels at the same time, instead of smoothly streaming the

recognition results over time. In order to solve this issue a modified version of RNN-T Loss was

introduced, called Monotonic RNN-T Loss [12].

From this project standpoint, we are particularly interested in one of the Monotonic RNN-

T properties. That is, the modified implementation offers slightly worse WER, but enables

Monotonic inference offering great speed up in comparison to regular RNN-T inference. In

order to perform MWER training inference is called multiple times, therefore introducing the

Monotonic RNN-T Loss reduces the training time significantly.
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Aim of the thesis

The aim of the work was to create an open source implementation of the MWER training

method allowing for a simple utilization of the technique by the research community to train

end-to-end speech recognition model.

Implementation of end-to-end pipeline is beyond the scope of the project, therefore we de-

cided to modify an existing open-source solution, Automatic Speech Recognition toolkit Ten-

sorFlowASR [9]. The scope of the work includes implementation of a modified version of the

regular RNN-T Loss, called Monotonic RNN-T Loss [12] and wrapping it around with MWER

Loss module capable of performing MWER training. The said module is then integrated with

the TensorFlowASR Library allowing the user to use its convenient out-of-the box interface to

train a speech recognition solution.

Other solutions

At the point of writing the thesis we could not identify any open-source solutions implementing

the MWER Training based on Monotonic RNN-T Loss. To this date, we did find only one open

source toolkit utilising MWER Training, that is the Tencent’s ’Pika’ project [11] that is a result

of Tencent’s research team paper [13]. However, the aforementioned solution does not allow

for training a model using MWER loss from scratch, but rather improving an already trained

RNN-T model using this technique. This, combined with the fact that the solution utilizes a

different technology stack makes the solution unsuitable for comparison with our project.

We have not identified any open-source implementations of the Monotonic RNN-T Loss yet.

There are numerous solutions implementing RNN-T Loss available one of them being the

TensorFlowASR [9] library, which offers a TensorFlow implementation of RNN-T Loss. We treat

this implementation as a baseline for comparisons with the Monotonic RNN-T Loss.

Quality measurement

The goal of this thesis is to provide a working, open source implementation of MWER Training

based on Monotonic RNN-T Loss. We will assume the solution is functional, and therefore we

met the goal of the project, if the following conditions are met:

1. Solution passes the tests verifying the correct computation of losses and gradients.
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2. MWER aftertraining procedure provides model with better accuracy in terms of WER

metric compared to Monotonic RNN-T training.

Requirements

In order to formalize the desired output of the project we have define a set of functional and

non-functional requirements.

Functional Requirements

The end user will be able to access a TensorFlow speech processing library using MWER loss

to provide speech recognition capacities.

Table 1: Functional Requirements

Name Description System Response

MWER Loss value calculation. Calculation of the value of loss

function for given output of

neural network.

A single value of loss function.

MWER Gradient calculation of

loss with respect to logits.

Given logits as neural network

output, the system efficiently

calculates a gradient of loss with

respect to the logits.

A tensor of values in the shape

of logit tensor.

RNN-T Monnotonic Loss value

calculation.

Calculation of the value of loss

function for given output of

neural network.

A single value of loss function.

RNN-T Monnotonic Gradient

calculation of loss with respect

to logits.

Given logits as neural network

output, the system efficiently

calculates a gradient of loss with

respect to the logits.

A tensor of values in the shape

of logit tensor.

Loss functions integration with

open source speech processing

kit.

Given speech fragments and la-

bels the system should train the

model using MWER loss.

Model capable of recognizing

speech.
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Non-Functional Requirements

In addition to the delivering the functional requirements, we aim to maintain quality of the

solution. The key requirements determine the project quality are captured with the following

points.

Table 2: Non-Functional Requirements

Requirements Area No. Description

Usability 1 Easily accessible TensorFlow interface in Python

language.

Reliability 2 Calculations are expected to be deterministic

and reconstructable.

Reliability 3 Calculations are expected to numerically stable.

Reliability 4 Computation of analytical gradients match the

results obtained using numerical methods.

Performance 5 System is expected to use parallel programming

paradigms and properly utilise GPUs capabili-

ties.

Division of work

Table (3) summarizes the work division between the team members.

Table 3: Division of Work

Name Work done

Jakub Frąc Implementation of MWER Loss.

Jeremi Kurdek Implementation of Monotonic RNN-T Loss.

Thesis organization

The body of the work is organized as follows. First, in Chapter (1) the reader is presented with

a brief theoretical introduction to the covered topics. The next Chapter (2) covers the design and

functioning of the provided implementation. Then, in Chapter (3) we discuss the means we took
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to verify the quality of the solution, we introduce domain-specific testing methods and describe

what tests were applied to each module. Next, in Chapter( 4) we summarize the experiments we

run in order to assess the capabilities of the provided solution and discuss the results. Finally,

we offer concluding remarks in Chapter (5).
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1. Theoretical background

In this chapter we summarize the underlying theoretical foundations behind the solution. The

MWER Loss is build upon the RNN-T architecture, closely interacting with it and utilizing a

modified version of the original RNN-T Loss (Monotonic RNN-T).

1.1. Baseline RNN-T

RNN-T architecture [5] [4] was introduced as an end-to-end, probabilistic sequence transduc-

tion, system able to transform any input sequence into any finite, discrete output sequence.

Architecture

Figure 2: RNN-T architecture

The RNN-T architecture consists of an encoder, a prediction (autoregressive decoder) network

and a joint network. Intuitively encoder is responsible for understanding the audio, based on the

current input, it tries to predict what the next word in the sequence would be. On the other hand,

predictor tries to predict the next word in the sequence using the the previously predicted words,

18



1.1. Baseline RNN-T

that is it tries to tell which word is going to occur based on the context. Joiner is a network

that combines the output of the encoder with the output of the predictor, applies softmax and

returns a probability distribution over all labels for each encoder timestep and output symbol.

More precisely, let x be a length T input sequence belonging to the set X∗ of all sequences over

some input space X. Let y be a length U output sequence belonging to the set Y ∗ of all sequences

over some output space Y . Then let us define the extended output space Ȳ = Y ∪ ∅, where

∅ denotes the blank symbol. The blank symbol can be interpreted as outputting ’nothing’, its

role is to denote different alignments between the input and output sequence. Let B : Ȳ ∗ → Y ∗

be a function removing blanks from the alignments in Ȳ ∗. Then, B−1(y) denotes the set of

all possible alignments (blank paddings) of sequence y ∈ Y ∗. RNN-T loss defines a conditional

probability distribution P (a ∈ Ȳ |x), which can be collapsed to a distribution over Y ∗:

P (y ∈ Y ∗|x) =
∑

a∈B−1(y)

P (a|x) (1.1)

The encoder receives acoustic vector x and transforms it into a sequence of hidden states ft

where t is the time index. The autoregressive prediction network takes the previous prediction

yu−1 and produces a hidden representation gu. The joiner network takes each combination of

encoder output ft and prediction network output hu and computes output logits ht,u. The final

posterior for each output token k – P (k|t, u) – is obtained after applying the softmax operation.

1.1.1. Training

The RNN-T loss function can be defined as the negative log posterior of label sequence y

given input vector x.

LRNNT = −lnP (y|x) (1.2)

where P (y|x) is defined as in (1.1)

To minimize LRNNT an efficient forward-backward algorithm was proposed:

∂LRNNT

∂P (k|t, u)
= −α(t, u)

P (y|x)


β(t, u+ 1) if k = yu+1

β(t+ 1, u) if k = ∅

0 otherwise

(1.3)
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1. Theoretical background

To simplify notation, define

y(t, u) = P (yu+1|t, u) (1.4)

∅(t, u) = P (∅|t, u) (1.5)

That is y(t, u) denotes the probability of outputting the next element of the label at time

step t and decoder step u. On the other hand, ∅(t, u) is the probability of outputting a blank

symbol at time step t and decoder step u.

The core of the forward-backward algorithm is defined by two variables: α and β. The forward

variable α(t, u) is defined as the probability of outputting y[1:u] during f[1:t]. The forward variables

for all 1 ≤ t ≤ T and 0 ≤ u ≤ U can be calculated recursively using

α(t, u) = α(t− 1, u) ·∅(t− 1, u) + α(t, u− 1) · y(t, u− 1) (1.6)

with initial condition α(1, 0) = 1. The total output sequence probability is equal to the forward

variable at the terminal node:

Pr(y|x) = α(T,U) ·∅(T,U) (1.7)

The backward variable β(t, u) is defined as the probability of outputting y[u+1:U ] during f[t:T ].

Then

β(t, u) = β(t+ 1, u) ·∅(t, u) + β(t, u+ 1) · y(t, u) (1.8)

with initial condition β(T,U) = ∅(T,U).

From the definition of the forward and backward variables it follows that their product α(t, u)·

β(t, u) at any point (t, u) in the output lattice is equal to the probability of emitting the complete

output sequence if yu is emitted during transcription step t.

Figure 3: Output probability lattice
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1.2. Monotonic RNN-T

Formula (1.3) allows us then to compute the gradients with respect to the softmax probabil-

ities. In order to obtain gradients with respect to activations another step is necessary:

∂L

∂h(k, t, u)
=

∑
k′∈Ȳ

∂L

Pr(k′|t, u)
∂ Pr(k′|t, u)
∂h(k, t, u) (1.9)

This formula is not optimal for concurrent implementation using GPU threads. For this goal

a transformed version has been proposed [8]:

∂L

∂h(k, t, u)
=

α(t, u) · Pr(k|t, u)
Pr(y∗|x)

· β(t, u)− α(t, u) · Pr(k|t, u)
Pr(y∗|x)



β(t, u+ 1), k = yu+1, u < U

β(t+ 1, u), k = ∅, t < T

1, k = ∅, t = T, u = U

0, otherwise
(1.10)

1.2. Monotonic RNN-T

1.2.1. Loss and training

The computation of α and β variables in the above formula is done using diagonals, that is

instead of computing values for single elements on the lattice, we are computing the value of

the whole diagonal at once. This results with T + U diagonal computations. Recent paper by

Tripathi et. al. proposed a more efficient way of computing the forward and backward variable,

based on the assumption that T >= U , that is the input sequence must not be shorter than

the target sequence. The assumption can found true empirically, as speech is sampled with high

frequency and a single output token usually consists of more than one letter. This allows to

change the formulas used to compute the forward and backward variables as following:

α(t, u) = α(t− 1, u) ·∅(t− 1, u) + α(t− 1, u− 1) · y(t− 1, u− 1) (1.11)

β(t, u) = β(t+ 1, u) ·∅(t, u) + β(t+ 1, u+ 1) · y(t, u) (1.12)

That is instead of stepping up in the lattice to produce a label element we are making a

step on the diagonal and producing both blank token and label element. This modification is

demonstrated by Figure (4).
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1. Theoretical background

Figure 4: Monotonic RNN-T step example

This change also leads to the modification of the formulas used to compute the gradients with

respect to the activations. The gradient part related to the probability of outputting the next

item of the label has to account for the diagonal step. The modified formula is captured by

Equation (1.13).

∂LMRNNT

∂h(k, t, u)
=

α(t, u) · Pr(k|t, u)
Pr(y∗|x)

·β(t, u)−α(t, u) · Pr(k|t, u)
Pr(y∗|x)



β(t+ 1, u+ 1), k = yu+1, u < U

β(t+ 1, u), k = ∅, t < T

1, k = ∅, t = T, u = U

0, otherwise
(1.13)

1.2.2. Inference

Since MWER training relies heavily on inference speed (N-best list generation) - similar to

Monotonic RNN-T - there has been developed monotonic decoding strategy [12]. For each time-

frame it can either expand hypotheses by feeding previous labels to decoder network and then

computing the joint network probabilities, or it can terminate hypotheses by taking a blank label

transition and move hypothesis to beam for next frame.
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1.2. Monotonic RNN-T

Algorithm 1 Monotonic inference algorithm
Require:

tmax is a size of encoder output

encoderOut is a list of size tmax of encoder outputs

maxhyps is the number of maximum hypotheses to keep in beam

hyps← blankList

t← 0

while t < tmax do

hidden← Decoder(hyps)

tokensnew ← Joint(encoderOutt, hidden)

hypsnew ← JoinCurrentTokensWithPreviousHyps(hyps, tokensnew)

hyps← GetTopK(hypsnew,maxhyps)

t← t+ 1

end while

Algorithm 1 explains monotonic inference (beam search). Below there is presented an expla-

nation of the used functions:

• Decoder() is a call to autoregressive language model. It receives already inferred part of

hypothesis as input and returns decoder hidden state, which later on will be used to infer

the next token in sentence.

• Joint() is a call to joint network. It receives encoder and decoder hidden states and returns

a tensor of probabilities for each token.

• JoinCurrentTokensWithPreviousHyps() is a function that concatenates hypothesis and

next token tensors, thus creating new hypotheses.

• GetTopK() is a function that receives list of tokens and an integer K as input and returns

top k most probable hypotheses.

It can be observed, that instead of passing scalars as algorithm input, the batches of data can

be passed, which results in speedup of decoding time.
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1. Theoretical background

1.3. MWER loss function

In order to perform discriminative training between hypotheses we use expected value of Word

Error Rate as a loss function.

LMWER = E[R(y, yr)] =
∑
yi∈Y

P (yi|x)R(yi, y
r) (1.14)

The hypothesis space Y can also be approximated by top N most probable hypotheses inferred

from probability distribution P (k|t, u).

LMWER(x, y
r) =

∑
yn∈nbest(x)

P̂ (yn|x)R(yn, y
r) (1.15)

Where

• nbest(x) are hypotheses generated using N-Best lists algorithm on output probability space

P (k|t, u) given by joiner model.

• P̂ (yn|x) = P (yn|x)∑
y′
i
∈nbest(x) P (y′i|x)

is a normalized probability of hypothesis yi over sum of prob-

abilities of all of the hypotheses in nbest(x).

• R(yi, y
r) is a risk function, in our case Word Error Rate function between hypothesis yi

and label sequence yr.

For a ease of implementation and guaranteed numerical stability the Equation (1.15) can also

be rewritten as:

LMWER(x, y
r) =

∑
yn∈nbest(x)

softmax(logP (yn|x))R(yn, y
r) (1.16)

1.3.1. Training

The output probability distribution (output of joint network) generated by model, for a given

sample, will be denoted as Pyi(k|t, u) (which means probability of token k, given t acoustic

encoder step and u predictor step) for output sentence yi inferred using the algorithm described

in 1.2. The probability of inferring a sequence yi will be denoted by P (yi|x). Then we know

that:

∂LMWER

∂logP (yi|x)
= P̂ (yi|x)(R(yi, y

r)− R̂) (1.17)

Where
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1.3. MWER loss function

• P̂ (yi|x) = P (yi|x)∑
y′
i
∈nbest(x) P (y′i|x)

is a normalized probability of hypothesis yi over sum of prob-

abilities of all of the hypotheses in nbest(x).

• yr is a sample label.

• R̂ =
∑

y′i∈nbest(x)
P̂ (y′i|x)R(y′i, y

r) is the expected number of word errors within the N-best

list.

From definition of monotonic RNN-T loss we know that:

∂logP (yi|x)
∂Pyi(k|t, u)

=
α(t, u)

Pyi(y|x)


β(t+ 1, u+ 1) if k = yu+1

β(t+ 1, u) if k = ∅

0 otherwise

(1.18)

Our goal is to find the derivative of loss with respect to joint network output. This allows us

to return gradient with respect to the outer-most layer in RNN-T model, which could further be

propagated to deeper layers with backpropagation algorithm. Therefore:

∂LMWER

∂Pyi(k|t, u)
=

∂LMWER

∂logP (yi|x)
∂logP (yi|x)
∂Pyi(k|t, u)

(1.19)

Which is the product of (respectively) 1.17 and 1.18. Derivation of the above equations can

be found in [7] and [5].

As in [13] we believe that without RNN-T loss regularization the N-Best generation (beam

search) slows down significantly which reduced the training efficiency substantially. Therefore,

the regularized MWER loss function is adopted:

L̂MWER = LMWER + λLMRNNT (1.20)

where λ is the regularization factor which we set to 1.0 throughout all of our experiments, as

in [13].
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2. Architecture

The solution is split into three logical modules, MWER Loss, Beam Search and Monotonic

RNN-T Loss. The modules and their inter-dependencies are visualized on Figure (5).

The MWER Loss module interacts directly with the TensorFlowASR Library, during training

time a Deep Learning model defined as a part of the said library calls the MWER Loss module

and begins the process of MWER Loss Calculation. In order to compute the loss and gradients,

MWER Loss module utilizes two other modules: Beam Search and Monotonic RNN-T Loss.

Figure 5: Architecture overview

The Beam Search module allows for generation of N-best hypothesis list, whereas the Montonic

RNN-T Loss module is responsible for calculation of Monotonic RNN-T loss and gradients with

the arguments provided by the trained model via the MWER Loss module.

The MWER Loss module utilizes then the Monotonic RNN-T Loss and the N-best list in

order to compute the MWER loss and gradients. The computed loss and gradients are then

returned to the model contained in the TensorFlowASR library for training.
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2.1. TensorFlowASR

2.1. TensorFlowASR

The interface allowing for interacting with our solution is provided by an open-source library

TensorFlowASR [9]. The library offers several end-to-end machine learning solutions in the field

of ASR. Specifically it includes fully functional RNN-T model as well as a modified version of

the basic RNN-T model called ’Conformer’ [6]. Conformer can be thought as an RNN-T with

additional convolution and attention layers. We have chosen to build our solution on the top

of the Conformer model for its usage of attention layers. It is important to note; however, that

the design of the model remains the same as RNN-T and is captured by Figure (2). Namely

the Conformer model utilizes the same building blocks: Encoder, Predictor and Joiner as the

original RNN-T.

2.2. Module Description

2.2.1. Monotonic RNN-T

The Monotonic RNN-T module is responsible for computation of Monotonic RNN-T Loss and

gradient of the loss with respect to the input logits.

MonotonicRNNTLoss class

The class serves as an entry point to the module, that is it offers a public interface the other

modules can call. The class itself inherits from tf.keras.losses.Loss class, which is a base Loss

class contained in high-level TensorFlow API called Keras. This allows for injecting the custom

loss into any model utilizing Keras API with ease. The class overrides one method of the base

class, namely the call method which given two inputs y_true and y_pred (model’s output and

the expected label) initiates the loss computation. The y_true and y_pred parameters are in

fact dictionaries containing fields necessary for loss computation. Those fields include:

• logits - the output of the RNN-T model as described in Section (1).

• labels - the correct transductions of the input audio sequences.

• labels_len - the length of the corresponding labels for each element of the processed batch.

• inputs_len - the length of the corresponding input for each element of the processed batch.

The call method extracts logits and labels from the input data, and begin the loss and gradients

computation logic. The internal computations are illustrated by the state diagram presented on

27



2. Architecture

Figure (6).

Figure 6: Monotonic RNN-T module state diagram

2.2.2. BeamSearch class

BeamSearch class implements monotonic inference algorithm described in Subsection (1.2.2).

Its initialization arguments are:

• vocabulary_size - A size of vocabulary.

• predict_net - An instance of prediction network model, which is implemented by Tensor-

FlowASR library.

• joint_net - An instance of joint network model, which is implemented by TensorFlowASR

library.

• blank_token - An index of blank token.

• beam_size - A size of beam.
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2.2. Module Description

The class does not change its state throughout computation. There is a call method which

serves as class instance’s interface. The call method receives following parameters:

• encoded - A tensor of encoder outputs.

• encoded_length - A tensor of lengths of encoder outputs.

• parallel_iterations - A parameter passed signifying number of parallel computations. In-

creasing it might improve inference time with a cost of more GPU memory usage.

• return_topk - A boolean - when True method returns top K (where K is beam size)

hypotheses instead of just one.

The class returns a pair of tensors (predictions, probabilities) - predictions in terms of token

ids and their respective probabilities. The internal computations are illustrated by the state

diagram presented on Figure (7).

Figure 7: Beam search module state diagram

2.2.3. MWERLoss class

MWERLoss class is responsible for calculating MWERLoss value and its respective gradient

as described in Section (1.3). Its initialization arguments are:

• global_batch_size - A batch size.

• blank - An index of blank token.
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2. Architecture

The class does not change its state throughout computation. There is a call method which

serves as class instance’s interface. The call method receives following parameters:

• prediction - A dictionary of predictions in terms of logits containing the following fields:

– logits - A tensor of logits.

– logits_length - A tensor of prediction lengths.

• hypothesis - A dictionary of tokenized predictions containing the following fields:

– labels - Tokenized hypotheses.

– labels_length - Lengths of hypotheses.

• text_labels - A dictionary of hypothesis in terms of text containing the following fields:

– text_hypotheses - Tensor of hypotheses in text format.

– text_labels - Tensor of original sample labels in text format.

It returns a tensor of loss values. If called under tf.GradientTape a gradient can also be

calculated with respect to the loss. The internal computations are illustrated by the state

diagram presented on Figure (9).

Figure 8: MWER loss module state diagram
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2.2. Module Description

2.2.4. MWERConformer class

A wrapper class created on top of Conformer class (implemented by TensorFlowASR library).

The class utilizes polymorphism to overwrite train_step and test_step methods used for train-

ing. Both of these methods implement the following procedure:

1. Create encoder hidden state on the input sample .

2. Create predictor hidden state on the input label.

3. Merge encoder and predictor hidden states with a use of joint network.

4. Calculate the RNN-T loss value with the output logits as an input the monotonic RNN-T

loss class instance.

5. Generate hypotheses using the Beam search class with the encoder hidden state as input.

6. Create predictor hidden state on the generated hypotheses.

7. Merge encoder and predictor hidden states (of hypotheses) with a use of joint network.

8. Calculate MWER loss value with the output logits (of hypotheses) as an input to the

MWER loss class instance.

9. Interpolate values of RNN-T loss and MWER-loss.

In addition the train_step function also calculates the gradient of the interpolated loss and

updates the models weights with a use of the optimizer. Its initialization arguments are:

• optimizer - An optimizer for updating the model weights.

• global_batch_size - A value of batch size.

• blank - An index of blank token.

• run_eagerly - A boolean - when True the model is run in eager mode instead of graph

mode.

In addition to these parameters, the class also receives standard parameters as the Conformer

class in the original TensorFlowASR library. The internal computations are illustrated by the

state diagram presented on Figure (9).
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2. Architecture

Figure 9: MWER Conformer module state diagram
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3. Tests

The chapter describes the means we took to verify the quality of the delivered solution against

the functional and nonfunctional requirements defined in the Introduction. First we present the

correctness assurance test methodology, then we shift to performance topic.

3.1. Testing methods introduction

Assessing quality of a custom loss and gradient functions implementations is a non trivial

task. Below we describe the method we employed to test our solution along with explanation.

Manual Loss Calculation

The goal of this test is to test whether the loss implementation returns a correct value given

some input. In order to verify that, we have precalculated the loss value on a small example by

hand. The test passes if the value obtained by the implementation matches the value obtained

using manual computation.

Finite Difference Gradient

The goal of this test method is to assure that the gradient of the loss concretion with respect

to the logits is calculated correctly. This is a numerical differentiation method is based on the

definition of derivative. The derivative of a function f at a point x is defined by the limit.

dy

dx
= lim

h→0

f(x+ h)− f(x)

h
(3.1)

We can observe that the target dy
dx derivative at some point x may be estimated by choosing

sufficiently small constant h and calculating the below formula:

dy

dx
≈ f(x+ h)− f(x)

h
(3.2)

The method can be easily adapted for numerically estimating the gradient of function f :

Rn → R. In order to obtain the numerical gradient, we simply need to use the formula 3.2 for
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3. Tests

each input variable.

We have incorporated finite difference gradient based tests to verify the correctness of the

solution, the test passes when the numerical gradient matches the gradient obtained by programs

computation.

Automatic differentiation gradient computation

In order to test the gradient we employ one more method, that is we compare the gradient

obtained by auto-differentiation with the gradient obtained using our solution.

Automatic differentiation refers to a general way of taking a program which computes a

value, and automatically constructing a procedure for computing derivatives of that value. The

TensorFlow library comes with a reverse-mode automatic differentiation. That is the program

generates a graph a function we want to differentiate and then computes the derivative in reverse

fashion using the chain rule.

Although the procedure is much slower than implementation of analytic gradient calculation,

we may use it to check whether the gradient that our implementation computes is accurate.

In order to test our solution, we simply need to compare the automatic differentiation gradient

and analytical gradient, the test passes should the gradients be equal.

Monotonic inference tests

Since monotonic inference requires a predictor and joint networks to properly work, there have

been developed “stub” classes that act like both of these models. Predictor class is deterministic

and the outputs are designed to match the inputs in a tree-like fashion - given some prefix

path the stub predictor network has predetermined output token for each of the paths. The

stub joint network simply adds the probabilities from synthetic encoder output and predictor

network. Because of the nature of said classes, it is easy to design inputs, simulate the expected

behaviour of algorithm by hand, predict proper output and compare it with the output of the

actual monotonic inference class.

3.2. Module test summary

The tests used to verify the quality of implementations may be found in the ’tests/mwer’

directory. Below, the reader may find a description of what test methods were used to test

different modules of the solution.
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3.2. Module test summary

Table 4: Test summary

Module name Tests applied

MWER Loss

• Automatic differentiation.

• Finite Difference Gradient.

Monotonic RNN-T Loss

• Finite Difference Gradient.

• Manual Loss Computation.

• Property Check1.

Beam Search

• Monotonic inference tests.

1. In order to test the implementation of the Monotonic RNN-T Loss we utilize one of its

properties. That is, the final value of the forward variable α should be equal to the final

value of the backward variable β. To assured the quality of implementation, we have turned

this property check into unit test.
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4. Experiments

4.1. Environment

Each experiment was run in the same environment. Below there are specific setups in terms

of hardware and software.

4.1.1. Software

Since our experimental cloud had certain limitations, the software versions are older than the

ones required in the project. Below there is a list of major libraries and their versions:

• TensorFlow 2.3.0

• Python 3.7

• CUDA 10.1

• cuDNN 7.6

Even though the libraries are a bit older than the ones required in the project, no major

changes in code were required. Hence the logic of the code stayed the same and the experiments

are valid.

4.1.2. Hardware

Each experiment was conducted on the following hardware setup:

• 8x Nvidia Tesla V100 32GB

• 64x CPU

• 480GB RAM memory
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4.2. Setup

4.2. Setup

4.2.1. Data

For training a LibriSpeech [1] dataset has been used. LibriSpeech is a corpus of approximately

1000 hours of 16kHz read English speech, prepared by Vassil Panayotov with the assistance of

Daniel Povey. The data is derived from read audiobooks, and has been carefully segmented and

aligned. For training 360 hours of clean speech was used. As for development and tests both

datasets have similar length of around 5 hours of clean speech.

4.2.2. Methodology

At first we consider random (non-trained) Conformer model. It is trained with librispeech-360-

clean (360 hours of clean speech) per epoch with monotonic RNN-T loss for around 100 epochs.

Then after each epoch, the validation loss on dataset dev-clean is calculated, and only models

with best results in terms of validation loss are kept. After the standard training, the pretrained

model is used for MWER aftertraining session (also around 100 epochs) with librispeech-360-

clean. Similar to standard training – after each epoch there is calculated validation loss on

dataset dev-clean and only models with best results in terms of validation loss are kept.

There is a single training session for standard training with monotonic RNN-T loss, and 4

training sessions for MWER aftertraining - each having different beam size parameter. Eventually

we end up with 5 models (1 standard, 4 aftertrained) and each of them is used separately for

inference on test-clean dataset. With the results of each model we can calculate mean Word

Error Rate for the dataset and compare the models using this metric.

4.2.3. Technical setup

Text tokenizer

As for text tokenizer we used SentencePiece model. SentencePiece [3] is an unsupervised text

tokenizer and detokenizer mainly for Neural Network-based text generation systems where the

vocabulary size is predetermined prior to the neural model training. For our training we used a

model trained on LibriSpeech text corpus with vocabulary size of 512.

Batch size vs beam size

Due to high memory complexity of the solution, we were forced to balance between size

of minibatches and beam size for training, since both of these parameters highly affect the
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GPU memory usage. For the standard RNN-T training we used batch size of 4. For MWER

aftertraining:

• For beam size 1, batch size 3 was used.

• For beam size 2, batch size 1 was used.

• for beam size 3, batch size 1 was used.

• for beam size 4, batch size 1 was used.

There have been problems with beam size 4 setup, since the biggest samples would not fit

into the memory. To address this issue we considered sample lengths and removed the samples

with Zscore > 2. Zscore is the number of standard deviations by which the value of a raw score is

above or below the mean value of what is being observed or measured. Fortunately there were

only 18 of such samples, which contributed only around 0.018% of the whole dataset, meaning

no significant amount of information was lost.

4.3. Training and validation loss

4.3.1. Monotonic RNN-T

Figure (10) shows the values of validation (blue) and training (orange) losses over 100 epochs

of training. We can conclude that model successfully converged on the given dataset and no

underfitting can be observed.

Figure 10: Validation (blue) and training (orange) loss value graph on Monotonic RNN-T training

Training time

The figure 10 represents how training and validation loss changed over 100 epochs of training.

The time to perform this training was around 50 hours. Since the overfitting started around
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4.3. Training and validation loss

50th epoch, we can see this time could possibly be cut in half down to 24 hours.

4.3.2. MWER

On the graphs presented on Figures (11) to (14) we can see how training and validation losses

changed over the course of 100 training epochs. It can be observed that no model underfitted

the data and all of the models started to overfit in the second half of the training.

Figure 11: Validation (orange) and training (grey) loss value graph on MWER training (beam width 1)

Figure 12: Validation (blue) and training (red) loss value graph on MWER training (beam width 2)
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Figure 13: Validation (green) and training (pink) loss value graph on MWER training (beam width 3)

Figure 14: Validation (orange) and training (blue) loss value graph on MWER training (beam width 4)

It is visible that validation loss increased during first few epochs of training, but then even-

tually converged to the smaller value than it was in the beginning. The only exception is the

scenario with beam size equal to 1, where the best validation loss was achieved during first few

epochs of training.

Training time

Figures (11) to (14) represent how training and validation loss changed over 100 epochs of

training. For beam sizes 2, 3 and 4 the training took around 500 hours to finish. It was not the

case for the setup with beam size 1, that could efficiently utilize higher batch size of 3, hence

reducing the training time down to 290 hours.

From the graphs it can also be observed that all of the training sessions started to overfit

around 40th epoch, hence the actual training time could be reduced to 200 hours for beam sizes

2, 3, 4 and 116 hours for beam size 1.

It is safe to conclude that our solution was around 10 times slower in worst case scenario and

6 times slower in the best scenario. If the memory usage was reduced, or the available GPU
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memory was increased, we believe the time could be reduced even further. We conclude that

from the fact, that setup with beam size 1 used a batch size of 3, which reduced the training

time significantly.

4.4. Word Error Rate score

Each of the models performed an inference with beam widths of 1, 2 and 4 on the test set.

The results of word error rate metric are presented in the table below. The best results are

highlighted in bold.

Table 5: WER results on the test dataset

Beam size 1 2 4

Monotonic RNN-T 14.75% 14.54% 14.68%

MWER (beam width 1) 13.81% 13.67% 13.64%

MWER (beam width 2) 15.17% 14.88% 14.96%

MWER (beam width 3) 14.79% 14.53% 14.75%

MWER (beam width 4) 14.51% 14.28% 14.49%

Table 6: Relative WER improvement compared to baseline model

Beam size 1 2 4

MWER (beam width 1) 6.4% 6.0% 7.1%

MWER (beam width 2) -2.8% -2.3% -1.9%

MWER (beam width 3) -0.3% 0.1% -0.5%

MWER (beam width 4) 1.6% 1.8% 1.3%

From the Table (5) we can conclude that MWER training with beam width 1 performed the

best, improving the result by around 1 percentage point. However, in this setup the batch size

was equal to 3. Batch size can affect the way the loss function is optimized and because of that

it is not perfectly clear whether small beam size would always result in the best result.

Except for that model, the only one that performed better was the one trained with beam

width 4, but it is hard to deduce whether this small improvement is statistically significant.
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Expected results

Standard RNN-T training rewards model for high probability of the label sentence, with

no regards to sentences with smaller probabilities. Because of that the next-most-probable

sentence might result in high WER. We expected MWER aftertraining to force model to increase

probabilities of sentences with smaller WER values, hence smoothing the distribution.

We believe that smoother distribution would allow us to infer better result with increased beam

size. Hence increasing inference beam size should result in increase of accuracy. Surprisingly,

it can be observed that increasing beam width during inference does not necessarily improve

the overall result in terms of WER metric. In [7] we can see that increasing beam size during

inference would result in increase of accuracy, instead of decreasing it, making this result even

more unexpected.

Comparison with other works

From the Table (6) it can be deduced that, overall, we achieved between ∼ 6% − 7% rela-

tive improvement. These are quite similar results compared to [7] and [10] where the relative

improvements (without additional procedures) were respectively 3.6% and 7.4%.

It is worth mentioning though, that these articles claimed to have trained the models on orders

of magnitude larger datasets than our - respectively ∼ 23, 000 and ∼ 21, 000 hours. Therefore

models trained on this much data posses much smaller variance compared to our model, slightly

undermining the basis for comparison.

4.5. Examples

In addition to reporting the WER score, we may look at the actual transcriptions generated

during inference in comparison to the ground truth labels. The below Table (7) lists a few

examples selected from the inference sentences. The inference was run on the best performing

model, that is the one trained with batch size 3 and beam width 1. The errors are marked with

bold.
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Table 7: Transduction examples

Ground truths Best model transductions

unc knocked at the door of the house and a

chubby pleasant faced woman dressed all in blue

opened it and greeted the visitors with a smile

a cannot the door of the house and a chubby

pleasant faced woman dressed all him blue

opened it and greeted the visitors with a smile

algebra medicine botany have each their slang algebra medicine bartony have each there

slang

the good natured audience in pity to fallen

majesty showed for once greater deference to the

king than to the minister and sung the psalm

which the former had called for

the good natitureri ordin in pity for an

majesty showed for one scratter deference to

the king than to the minister and some dis

which the former had called for

As indicated from analysis of the WER scores, the model gets the vast majority of words

in a sentences correctly and fails on only a few. We can observe that the model struggles with

similarly sounding words as well as has a hard time deciphering less frequently occurring phrases.

It should be noted; however, that because of the method employed for dataset generation some

of the sentences (e.g. first ground truth sentence in Table (7) have artifacts. This, combined

with the fact the LibriSpeech corpus contains sentences coming from literary English, makes the

feat of transducing the audio sequences all the more impressive.
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5. Conclusion

The goal of the thesis was to provide an open source implementation of MWER Training based

on Monotonic RNN-T Loss. We implemented the modified training procedure and integrated

it with the TensorFlowASR Library. Furthermore, we tested the quality of the solution using

unit tests and numerical methods. The solution was also evaluated experimentally, we run

experiments with several configurations and compared the results to the baseline model in order

to demonstrate the effects of the implemented training procedure.

All in all, we consider the project as a success. We delivered an open-source implementation

of MWER training whose quality is assured by implemented tests. The experiments indicated

a slight improvement in WER score after applying the MWER aftertraining procedure. The

obtained results are consistent with the results reported by the research community.

Nonetheless, there are some areas of our work that could use improvement.

First, in order to fully evaluate the solution more experiments would be necessary. Ideally, we

would train the model on larger datasets. The state of the art models for audio transduction are

usually trained on datasets containing tens of thousands of speech hours ([7] [10] [13]), whereas

we used only 360 hours of speech. This would allow for judging the solution with more certainty.

Second, we believe that the solution could be improved by identifying and removing the

bottlenecks, which would allow us to perform model aftertraining with larger beam widths and

batch sizes.

Finally, we could remove the TensorFlowASR library and create our own model in order to

retain a full control of the training process.
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A. User Manual

This appendix describes how to install and run the solution. The user is assumed to have

access to a workstation with GPU. The solution was tested exclusively on Linux (Ubuntu),

henceforth we assume the user’s workstation runs this operating system.

A.1. Installation instructions

The solution may be used directly from the shipped source code or accessed via docker con-

tainer. Below we present instructions for both of the methods.

A.1.1. Manual installation

1. Install Python.

2. Add current directory to PYTHONPATH

export PYTHONPATH="${PYTHONPATH}:${PWD}"

3. Install requirements.

pip install -r requirements-pre.txt && pip install -r requirements.txt

4. Download LibriSpeech test dataset and extract it.

wget https://www.openslr.org/resources/12/test-clean.tar.gz

tar -xzvf test-clean.tar.gz

5. Create transcriptions for the downloaded dataset.



A.1. Installation instructions

python ./scripts/create_librispeech_trans.py \

-d ./LibriSpeech/test-clean ./LibriSpeech/test_transcriptions/test.tsv

6. Change paths in the examples/conformer/config.yml to match directory layout. Specifically

edit dataset paths to match locations of transcripts.

A.1.2. Docker installation

The solution may be accessed using a docker environment. The steps listed above in Manual

installation instructions are enclosed by a docker container simplifying the installation process.

1. Install Docker.

2. Install docker compose.

3. Install nvidia-docker.

4. Run docker container.

docker compose run tensorflow_asr

A.1.3. Training

NOTE: Training will fail on majority of consumer tier GPUs due to lack of memory.

First, the training and evaluation data needs to downloaded. This can be achieved by utilizng

the following commands.

wget https://www.openslr.org/resources/12/dev-clean.tar.gz

tar -xzvf dev-clean.tar.gz

wget https://www.openslr.org/resources/12/train-clean-360.tar.gz

tar -xzvf train-clean-360.tar.gz

Then, transcriptions for the training and eval data should be created:

python ./scripts/create_librispeech_trans.py \

-d. /LibriSpeech/train-clean-360/data/LibriSpeech/test_transcriptions/train.tsv

python ./scripts/create_librispeech_trans.py \

-d ./LibriSpeech/dev-clean/data/LibriSpeech/test_transcriptions/dev.tsv



A. User Manual

In order to start training, under the path examples/conformer/train.py, there’s a script start-

ing the training process. If user wishes to train with MWER training procedure, in config.yml

under model_config there’s a boolean mwer_training which, if set to True, starts the MWER

training procedure. Otherwise it starts standard training procedure with regular RNN-T loss.

train.py receives specific arguments for training. Most important are:

• –config a path to model config.yml file.

• –subwords a flag whether to use subwords as text tokenizer.

• –bs batch size.

• –devices which GPU devices are supposed to be used.

The rest of arguments are described in train.py file.

Example of such command (that works under default setup) would be:

python examples/conformer/train.py \

--config examples/conformer/config.yml --sentence_piece --devices 0

A.1.4. Test

In order to start testing, under the path examples/conformer/test.py, there’s a script starting

the inference process. test.py receives specific arguments for training. Most important are:

• –saved a path to saved model.

• –config a path to model config.yml file.

• –subwords a flag whether to use subwords as text tokenizer.

• –bs batch size.

• –device which GPU devices are supposed to be used.

• –output path to output transcriptions.

Example of such command (that works under default setup) would be:

python ./examples/conformer/test.py --config ./examples/conformer/config.yml \

--saved predefined_checkpoints/weights.hdf5 \

--sentence_piece \

--output test_result.tsv \

--bs 1



A.1. Installation instructions

A.1.5. Demonstration

To run a demonstration on the actual .flac file, from the root directory one needs to run the

command:

python examples/demonstration/conformer.py \

--config ./examples/conformer/config.yml \

--saved predefined_checkpoints/weights.hdf5 \

--sentence_piece \

--subwords ./vocabularies/librispeech/spm_512 \

--beam_width 1 \

examples/demonstration/wavs/1089-134691-0000.flac

This script demonstrates the usage of the model on real world data.
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